import base64 import json import logging import os import random import re from PIL import Image import pytesseract import io import tempfile import requests import time import openai from dotenv import load_dotenv from datetime import datetime, timezone, timedelta from openai import OpenAI from urllib.parse import quote from bs4 import BeautifulSoup from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry import tweepy import flickr_api from foodie_config import ( RECIPE_KEYWORDS, PROMO_KEYWORDS, HOME_KEYWORDS, PRODUCT_KEYWORDS, PERSONA_CONFIGS, get_clean_source_name, AUTHORS, LIGHT_TASK_MODEL, SUMMARY_MODEL, X_API_CREDENTIALS, FLICKR_API_KEY, FLICKR_API_SECRET, PIXABAY_API_KEY ) load_dotenv() client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) def load_json_file(file_path, expiration_hours): entries = [] cutoff = datetime.now(timezone.utc) - timedelta(hours=expiration_hours) if not os.path.exists(file_path): logging.info(f"File {file_path} does not exist, returning empty list") return entries try: with open(file_path, 'r') as f: lines = f.readlines() for i, line in enumerate(lines, 1): try: entry = json.loads(line.strip()) if not isinstance(entry, dict) or "title" not in entry or "timestamp" not in entry: logging.warning(f"Skipping malformed entry in {file_path} at line {i}: {line.strip()}") continue timestamp = datetime.fromisoformat(entry["timestamp"]) if timestamp > cutoff: entries.append(entry) else: logging.debug(f"Entry expired in {file_path}: {entry['title']}") except json.JSONDecodeError as e: logging.warning(f"Skipping invalid JSON line in {file_path} at line {i}: {e}") continue except Exception as e: logging.warning(f"Skipping malformed entry in {file_path} at line {i}: {line.strip()}") continue logging.info(f"Loaded {len(entries)} entries from {file_path}, {len(entries)} valid after expiration check") return entries except Exception as e: logging.error(f"Failed to load {file_path}: {e}") return entries def save_json_file(file_path, title, timestamp): try: entries = load_json_file(file_path, 24 if "posted_" in file_path else 7 * 24) # 24 hours for titles, 7 days for images entry = {"title": title, "timestamp": timestamp} entries.append(entry) # Prune entries older than expiration period expiration_hours = 24 if "posted_" in file_path else 7 * 24 cutoff = datetime.now(timezone.utc) - timedelta(hours=expiration_hours) pruned_entries = [e for e in entries if datetime.fromisoformat(e["timestamp"]) > cutoff] with open(file_path, 'w') as f: for entry in pruned_entries: f.write(json.dumps(entry) + '\n') logging.info(f"Saved '{title}' to {file_path}") logging.info(f"Pruned {file_path} to {len(pruned_entries)} entries (older than {expiration_hours//24} days removed)") except Exception as e: logging.error(f"Failed to save to {file_path}: {e}") def load_post_counts(): counts = [] filename = '/home/shane/foodie_automator/x_post_counts.json' if os.path.exists(filename): try: with open(filename, 'r') as f: lines = f.readlines() for i, line in enumerate(lines, 1): if line.strip(): try: entry = json.loads(line.strip()) # Check for expected fields in x_post_counts.json if not isinstance(entry, dict) or "username" not in entry or "month" not in entry or "monthly_count" not in entry or "day" not in entry or "daily_count" not in entry: logging.warning(f"Skipping malformed entry in {filename} at line {i}: {entry}") continue counts.append(entry) except json.JSONDecodeError as e: logging.warning(f"Skipping invalid JSON line in {filename} at line {i}: {e}") logging.info(f"Loaded {len(counts)} entries from {filename}") except Exception as e: logging.error(f"Failed to load {filename}: {e}") counts = [] # Reset to empty on failure if not counts: counts = [{ "username": author["username"], "month": datetime.now(timezone.utc).strftime("%Y-%m"), "monthly_count": 0, "day": datetime.now(timezone.utc).strftime("%Y-%m-%d"), "daily_count": 0 } for author in AUTHORS] current_month = datetime.now(timezone.utc).strftime("%Y-%m") current_day = datetime.now(timezone.utc).strftime("%Y-%m-%d") for entry in counts: if entry["month"] != current_month: entry["month"] = current_month entry["monthly_count"] = 0 if entry["day"] != current_day: entry["day"] = current_day entry["daily_count"] = 0 return counts def save_post_counts(counts): with open('/home/shane/foodie_automator/x_post_counts.json', 'w') as f: for item in counts: json.dump(item, f) f.write('\n') logging.info("Saved post counts to x_post_counts.json") import re def generate_article_tweet(author, post, persona): title = post["title"] url = post["url"] author_handle = f"@{author['username']}" prompt = ( f"Craft a sharp tweet (under 230 characters) for {author_handle} with the voice of '{persona}'. " f"Distill the essence of the article '{title}' into a concise, engaging message. " f"Include the raw URL '{url}' at the end. " f"Do not wrap the tweet in quotation marks. " f"Make it bold, spark curiosity, and invite engagement with a human touch. " f"Swap 'elevate' for dynamic terms like 'ignite' or 'unleash'. " f"Absolutely do not include hashtags, emojis, or phrases like '[Read more]' or 'Read more'. " f"Skip any extra fluff or formatting around the URL—just append the raw URL after a space. " f"Example: 'Love food trends? Check this out! {url}'" ) response = client.chat.completions.create( model=SUMMARY_MODEL, messages=[ {"role": "system", "content": "You are a social media viral expert crafting engaging tweets."}, {"role": "user", "content": prompt} ], max_tokens=80, temperature=0.7 ) tweet = response.choices[0].message.content.strip() # Post-generation check: Strip any emojis using regex tweet = re.sub(r'[\U0001F600-\U0001F64F\U0001F300-\U0001F5FF\U0001F680-\U0001F6FF\U0001F700-\U0001F77F\U0001F780-\U0001F7FF\U0001F800-\U0001F8FF\U0001F900-\U0001F9FF\U0001FA00-\U0001FA6F\U0001FA70-\U0001FAFF\U00002702-\U000027B0\U000024C2-\U0001F251]', '', tweet).strip() # Strip "[Read more]" or similar phrases as an additional failsafe tweet = re.sub(r'\[Read more\]\(.*?\)|\bRead more\b', '', tweet).strip() # Strip leading or trailing quotation marks tweet = tweet.strip('"\'') # Ensure tweet fits within 280 characters, accounting for URL (Twitter shortens to 23 chars) url_length = 23 max_tweet_length = 280 - url_length - 1 # Subtract 1 for the space before URL if len(tweet) > max_tweet_length: tweet = tweet[:max_tweet_length-3] + "... " + url logging.info(f"Generated tweet: {tweet}") return tweet def post_tweet(author, tweet): credentials = next((cred for cred in X_API_CREDENTIALS if cred["username"] == author["username"]), None) if not credentials: logging.error(f"No X credentials found for {author['username']}") return False post_counts = load_post_counts() author_count = next((entry for entry in post_counts if entry["username"] == author["username"]), None) if author_count["monthly_count"] >= 500: logging.warning(f"Monthly post limit (500) reached for {author['username']}") return False if author_count["daily_count"] >= 20: logging.warning(f"Daily post limit (20) reached for {author['username']}") return False try: client = tweepy.Client( consumer_key=credentials["api_key"], consumer_secret=credentials["api_secret"], access_token=credentials["access_token"], access_token_secret=credentials["access_token_secret"] ) response = client.create_tweet(text=tweet) author_count["monthly_count"] += 1 author_count["daily_count"] += 1 save_post_counts(post_counts) logging.info(f"Posted tweet for {author['username']}: {tweet}") return True except Exception as e: logging.error(f"Failed to post tweet for {author['username']}: {e}") return False def select_best_persona(interest_score, content=""): logging.info("Using select_best_persona with interest_score and content") personas = ["Visionary Editor", "Foodie Critic", "Trend Scout", "Culture Connoisseur"] content_lower = content.lower() if any(kw in content_lower for kw in ["tech", "ai", "innovation", "sustainability"]): return random.choice(["Trend Scout", "Visionary Editor"]) elif any(kw in content_lower for kw in ["review", "critic", "taste", "flavor"]): return "Foodie Critic" elif any(kw in content_lower for kw in ["culture", "tradition", "history"]): return "Culture Connoisseur" if interest_score >= 8: return random.choice(personas[:2]) elif interest_score >= 6: return random.choice(personas[2:]) return random.choice(personas) def get_image(search_query): headers = {'User-Agent': 'InsiderFoodieBot/1.0 (https://insiderfoodie.com; contact@insiderfoodie.com)'} # Try Pixabay with the original query try: pixabay_url = f"https://pixabay.com/api/?key={PIXABAY_API_KEY}&q={quote(search_query)}&image_type=photo&per_page=10" response = requests.get(pixabay_url, headers=headers, timeout=10) response.raise_for_status() data = response.json() for hit in data.get('hits', []): img_url = hit.get('webformatURL') if not img_url or img_url in used_images: continue uploader = hit.get('user', 'Unknown') page_url = hit.get('pageURL', img_url) used_images.add(img_url) save_used_images() logging.info(f"Selected Pixabay image: {img_url} by {uploader} for query '{search_query}'") return img_url, "Pixabay", uploader, page_url logging.info(f"No valid Pixabay image found for query '{search_query}'. Trying fallback query.") except Exception as e: logging.warning(f"Pixabay image fetch failed for query '{search_query}': {e}") # Fallback to a generic query fallback_query = "food dining" try: pixabay_url = f"https://pixabay.com/api/?key={PIXABAY_API_KEY}&q={quote(fallback_query)}&image_type=photo&per_page=10" response = requests.get(pixabay_url, headers=headers, timeout=10) response.raise_for_status() data = response.json() for hit in data.get('hits', []): img_url = hit.get('webformatURL') if not img_url or img_url in used_images: continue uploader = hit.get('user', 'Unknown') page_url = hit.get('pageURL', img_url) used_images.add(img_url) save_used_images() logging.info(f"Selected Pixabay fallback image: {img_url} by {uploader} for query '{fallback_query}'") return img_url, "Pixabay", uploader, page_url logging.warning(f"No valid Pixabay image found for fallback query '{fallback_query}'.") except Exception as e: logging.warning(f"Pixabay fallback image fetch failed for query '{fallback_query}': {e}") # Ultimate fallback: return None but log clearly logging.error(f"All image fetch attempts failed for query '{search_query}'. Returning None.") return None, None, None, None def generate_image_query(title, summary): try: prompt = ( "Given the following article title and summary, generate a concise image search query (max 5 words) to find a relevant image. " "Also provide a list of relevance keywords (max 5 words) that should be associated with the image. " "Return the result as a JSON object with 'search' and 'relevance' keys.\n\n" f"Title: {title}\n\n" f"Summary: {summary}\n\n" "Example output:\n" "```json\n" "{\"search\": \"Italian cuisine trends\", \"relevance\": \"pasta wine dining culture\"}\n" "```" ) response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": "Generate an image search query and relevance keywords."} ], max_tokens=100, temperature=0.5 ) raw_response = response.choices[0].message.content json_match = re.search(r'```json\n([\s\S]*?)\n```', raw_response) if not json_match: logging.warning(f"Failed to parse image query JSON: {raw_response}") return title, [], True query_data = json.loads(json_match.group(1)) search_query = query_data.get("search", title) relevance_keywords = query_data.get("relevance", "").split() # Log the JSON object in a single line log_json = json.dumps(query_data).replace('\n', ' ').replace('\r', ' ') logging.debug(f"Image query from content: {log_json}") return search_query, relevance_keywords, False except Exception as e: logging.warning(f"Image query generation failed: {e}. Using title as fallback.") return title, [], True def smart_image_and_filter(title, summary): try: content = f"{title}\n\n{summary}" prompt = ( "Analyze this article title and summary. Extract key entities (brands, locations, cuisines, or topics) " "for an image search about food industry trends or viral content. Prioritize specific terms if present, " "otherwise focus on the main theme. Also identify the main topic of the article (e.g., a specific food item or cuisine). " "Return 'SKIP' if the article is about home appliances, recipes, promotions, or contains 'homemade', else 'KEEP'. " "Return as JSON with double quotes for all property names and string values (e.g., " "{\"image_query\": \"specific term\", \"relevance\": [\"keyword1\", \"keyword2\"], \"main_topic\": \"main food item\", \"action\": \"KEEP\" or \"SKIP\"})." ) response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": content} ], max_tokens=100 ) raw_result = response.choices[0].message.content.strip() logging.info(f"Raw GPT smart image/filter response: '{raw_result}'") cleaned_result = re.sub(r'```json\s*|\s*```', '', raw_result).strip() fixed_result = re.sub(r"(?{image_source} by {uploader}' if pixabay_url and uploader else image_source requests.post( f"{wp_base_url}/media/{image_id}", headers={"Authorization": headers["Authorization"], "Content-Type": "application/json"}, json={"caption": caption} ) logging.info(f"Uploaded image '{safe_title}.jpg' to WP (ID: {image_id}) with caption '{caption}'") return image_id except Exception as e: logging.error(f"Image upload to WP failed for '{post_title}': {e}") return None def determine_paragraph_count(interest_score): if interest_score >= 9: return 5 elif interest_score >= 7: return 4 return 3 def is_interesting(summary): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Rate this content from 0-10 based on its rarity, buzzworthiness, and engagement potential for food lovers, covering a wide range of food topics (skip recipes). " "Score 8-10 for rare, highly shareable ideas that grab attention. " "Score 5-7 for fresh, engaging updates with broad appeal. Score below 5 for common or unremarkable content. " "Return only a number." )}, {"role": "user", "content": f"Content: {summary}"} ], max_tokens=5 ) raw_score = response.choices[0].message.content.strip() score = int(raw_score) if raw_score.isdigit() else 0 print(f"Interest Score for '{summary[:50]}...': {score} (raw: {raw_score})") logging.info(f"Interest Score: {score} (raw: {raw_score})") return score except Exception as e: logging.error(f"Interestingness scoring failed: {e}") print(f"Interest Error: {e}") return 0 def generate_title_from_summary(summary): banned_words = ["elevate", "elevating", "elevated"] for attempt in range(3): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Generate a concise, engaging title (under 100 characters) based on this summary, covering food topics. " "Craft it with Upworthy/Buzzfeed flair—think ‘you won’t believe this’ or ‘this is nuts’—for food insiders. " "Avoid quotes, emojis, special characters, or the words 'elevate', 'elevating', 'elevated'. " "End with a question to spark shares." )}, {"role": "user", "content": f"Summary: {summary}"} ], max_tokens=30 ) title = response.choices[0].message.content.strip().replace('"', '').replace("'", "") if ':' in title: title = title.split(':', 1)[1].strip() if len(title) > 100 or any(word in title.lower() for word in banned_words): reason = "length" if len(title) > 100 else "banned word" print(f"Rejected title (attempt {attempt + 1}/3): '{title}' due to {reason}") logging.info(f"Rejected title (attempt {attempt + 1}/3): '{title}' due to {reason}") continue logging.info(f"Generated title: {title}") return title except Exception as e: logging.error(f"Title generation failed (attempt {attempt + 1}/3): {e}") print(f"Title Error: {e}") print("Failed to generate valid title after 3 attempts") logging.info("Failed to generate valid title after 3 attempts") return None def summarize_with_gpt4o(content, source_name, link, interest_score=0, extra_prompt=""): try: persona = select_best_persona(interest_score, content) persona_config = PERSONA_CONFIGS.get(persona, { "article_prompt": "Write a concise, engaging summary that captures the essence of the content for food lovers.", "description": "a generic food writer", "tone": "an engaging tone" }) prompt = persona_config["article_prompt"].format( description=persona_config["description"], tone=persona_config["tone"], num_paragraphs=determine_paragraph_count(interest_score) ) logging.info(f"Using {persona} with interest_score and content") full_prompt = ( f"{prompt}\n\n" f"Do not include the article title in the summary.\n\n" f"{extra_prompt}\n\n" f"Avoid using the word 'elevate'—use more humanized language like 'level up' or 'bring to life'.\n" f"Content to summarize:\n{content}\n\n" f"Source: {source_name}\n" f"Link: {link}" ) response = client.chat.completions.create( model=SUMMARY_MODEL, messages=[ {"role": "system", "content": full_prompt}, {"role": "user", "content": content} ], max_tokens=1000, temperature=0.7 ) summary = response.choices[0].message.content.strip() # Post-process to remove the original title if it still appears # Extract the title from the content (assuming it's the first line or part of the prompt) # For simplicity, we can pass the title as an additional parameter if needed # Here, we'll assume the title is passed via the calling function (e.g., from foodie_automator_rss.py) # For now, we'll use a placeholder for the title removal logic # In foodie_automator_rss.py, the title is available as entry.title # We'll handle the title removal in the calling script instead logging.info(f"Processed summary (Persona: {persona}): {summary}") return summary except Exception as e: logging.error(f"Summary generation failed with model {SUMMARY_MODEL}: {e}") return None def insert_link_naturally(summary, source_name, source_url): try: logging.info(f"Input summary to insert_link_naturally: {summary!r}") prompt = ( "Take this summary and insert a single HTML link into one paragraph (randomly chosen). " "Use the format '{source_name}' and weave it into the text naturally, " "e.g., 'According to {source_name}, ' or '{source_name} shares that '. " "Place the link at the end of a sentence (after a period). " "Preserve the original paragraph structure, maintaining all newlines exactly as they are (each paragraph separated by a single \\n). " "Return the modified summary with exactly one link.\n\n" "Summary:\n{summary}\n\n" "Source Name: {source_name}\nSource URL: {source_url}" ).format(summary=summary, source_name=source_name, source_url=source_url) # Add retry mechanism for attempt in range(3): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": "Insert the link naturally into the summary."} ], max_tokens=1000, temperature=0.7 ) new_summary = response.choices[0].message.content.strip() link_pattern = f'{source_name}' if new_summary and new_summary.count(link_pattern) == 1: paragraphs = new_summary.split('\n') paragraphs = [p.strip() for p in paragraphs] new_summary = '\n'.join(paragraphs) logging.info(f"Summary with naturally embedded link (normalized): {new_summary!r}") return new_summary else: logging.warning(f"GPT attempt {attempt + 1}/3 failed to insert link correctly: {new_summary}") except Exception as e: logging.error(f"Link insertion attempt {attempt + 1}/3 failed: {e}") logging.warning(f"GPT failed to insert link after 3 attempts. Using fallback.") except Exception as e: logging.error(f"Link insertion failed: {e}") # Fallback path time_pattern = r'\b\d{1,2}\.\d{2}(?:am|pm)\b' protected_summary = re.sub(time_pattern, lambda m: m.group(0).replace('.', '@'), summary) paragraphs = protected_summary.split('\n') if not paragraphs or all(not p.strip() for p in paragraphs): logging.error("No valid paragraphs to insert link.") return summary target_para = random.choice([p for p in paragraphs if p.strip()]) link_pattern = f'{source_name}' phrases = [ f"According to {link_pattern}", f"{link_pattern} notes this insight", f"Details shared by {link_pattern}", f"Source: {link_pattern}" ] insertion_phrase = random.choice(phrases) sentences = re.split(r'(?<=[.!?])\s+', target_para) insertion_point = -1 for i, sent in enumerate(sentences): if sent.strip() and '@' not in sent: insertion_point = sum(len(s) + 1 for s in sentences[:i+1]) break if insertion_point == -1: insertion_point = len(target_para) new_para = f"{target_para[:insertion_point]} {insertion_phrase}. {target_para[insertion_point:]}".strip() paragraphs[paragraphs.index(target_para)] = new_para new_summary = '\n'.join(paragraphs) new_summary = new_summary.replace('@', '.') logging.info(f"Fallback summary with link: {new_summary!r}") return new_summary def generate_category_from_summary(summary): try: if not isinstance(summary, str) or not summary.strip(): logging.warning(f"Invalid summary for category generation: {summary}. Defaulting to 'Trends'.") return "Trends" response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Based on this summary, select the most relevant category from: Food, Culture, Trends, Health, Lifestyle, Drink, Eats. " "Return only the category name." )}, {"role": "user", "content": summary} ], max_tokens=10 ) category = response.choices[0].message.content.strip() logging.info(f"Generated category: {category}") return category if category in ["Food", "Culture", "Trends", "Health", "Lifestyle", "Drink", "Eats"] else "Trends" except Exception as e: logging.error(f"Category generation failed: {e}") return "Trends" def get_wp_category_id(category_name, wp_base_url, wp_username, wp_password): try: headers = {"Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}"} response = requests.get(f"{wp_base_url}/categories", headers=headers, params={"search": category_name}) response.raise_for_status() categories = response.json() for cat in categories: if cat["name"].lower() == category_name.lower(): return cat["id"] return None except Exception as e: logging.error(f"Failed to get WP category ID for '{category_name}': {e}") return None def create_wp_category(category_name, wp_base_url, wp_username, wp_password): try: headers = { "Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}", "Content-Type": "application/json" } payload = {"name": category_name} response = requests.post(f"{wp_base_url}/categories", headers=headers, json=payload) response.raise_for_status() return response.json()["id"] except Exception as e: logging.error(f"Failed to create WP category '{category_name}': {e}") return None def get_wp_tag_id(tag_name, wp_base_url, wp_username, wp_password): try: headers = {"Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}"} response = requests.get(f"{wp_base_url}/tags", headers=headers, params={"search": tag_name}) response.raise_for_status() tags = response.json() for tag in tags: if tag["name"].lower() == tag_name.lower(): return tag["id"] return None except Exception as e: logging.error(f"Failed to get WP tag ID for '{tag_name}': {e}") return None def post_to_wp(post_data, category, link, author, image_url, original_source, image_source="Pixabay", uploader=None, pixabay_url=None, interest_score=4, post_id=None, should_post_tweet=True): wp_base_url = "https://insiderfoodie.com/wp-json/wp/v2" logging.info(f"Starting post_to_wp for '{post_data['title']}', image_source: {image_source}") if not isinstance(author, dict) or "username" not in author or "password" not in author: raise ValueError(f"Invalid author data: {author}. Expected a dictionary with 'username' and 'password' keys.") wp_username = author["username"] wp_password = author["password"] if not isinstance(interest_score, int): logging.error(f"Invalid interest_score type: {type(interest_score)}, value: '{interest_score}'. Defaulting to 4.") interest_score = 4 elif interest_score < 0 or interest_score > 10: logging.warning(f"interest_score out of valid range (0-10): {interest_score}. Clamping to 4.") interest_score = min(max(interest_score, 0), 10) try: headers = { "Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}", "Content-Type": "application/json" } auth_test = requests.get(f"{wp_base_url}/users/me", headers=headers) auth_test.raise_for_status() logging.info(f"Auth test passed for {wp_username}: {auth_test.json()['id']}") category_id = get_wp_category_id(category, wp_base_url, wp_username, wp_password) if not category_id: category_id = create_wp_category(category, wp_base_url, wp_username, wp_password) logging.info(f"Created new category '{category}' with ID {category_id}") else: logging.info(f"Found existing category '{category}' with ID {category_id}") tags = [1] if interest_score >= 9: picks_tag_id = get_wp_tag_id("Picks", wp_base_url, wp_username, wp_password) if picks_tag_id and picks_tag_id not in tags: tags.append(picks_tag_id) logging.info(f"Added 'Picks' tag (ID: {picks_tag_id}) to post due to high interest score: {interest_score}") content = post_data["content"] if content is None: logging.error(f"Post content is None for title '{post_data['title']}' - using fallback") content = "Content unavailable. Check the original source for details." formatted_content = "\n".join(f"

{para}

" for para in content.split('\n') if para.strip()) author_id_map = { "owenjohnson": 10, "javiermorales": 2, "aishapatel": 3, "trangnguyen": 12, "keishareid": 13, "lilamoreau": 7 } author_id = author_id_map.get(author["username"], 5) # Handle image upload image_id = None if image_url: logging.info(f"Attempting image upload for '{post_data['title']}', URL: {image_url}, source: {image_source}") image_id = upload_image_to_wp(image_url, post_data["title"], wp_base_url, wp_username, wp_password, image_source, uploader, pixabay_url) if not image_id: logging.info(f"Flickr upload failed for '{post_data['title']}', falling back to Pixabay") pixabay_query = post_data["title"][:50] image_url, image_source, uploader, pixabay_url = get_image(pixabay_query) if image_url: image_id = upload_image_to_wp(image_url, post_data["title"], wp_base_url, wp_username, wp_password, image_source, uploader, pixabay_url) if not image_id: logging.warning(f"All image uploads failed for '{post_data['title']}' - posting without image") payload = { "title": post_data["title"], "content": formatted_content, "status": "publish", "categories": [category_id], "tags": tags, "author": author_id, "meta": { "original_link": link, "original_source": original_source, "interest_score": interest_score } } if image_id: payload["featured_media"] = image_id logging.info(f"Set featured image for post '{post_data['title']}': Media ID={image_id}") endpoint = f"{wp_base_url}/posts/{post_id}" if post_id else f"{wp_base_url}/posts" method = requests.post logging.debug(f"Sending WP request to {endpoint} with payload: {json.dumps(payload, indent=2)}") response = method(endpoint, headers=headers, json=payload) response.raise_for_status() post_info = response.json() logging.debug(f"WP response: {json.dumps(post_info, indent=2)}") if not isinstance(post_info, dict) or "id" not in post_info: raise ValueError(f"Invalid WP response: {post_info}") post_id = post_info["id"] post_url = post_info["link"] # Save to recent_posts.json timestamp = datetime.now(timezone.utc).isoformat() save_post_to_recent(post_data["title"], post_url, author["username"], timestamp) # Post article tweet to X only if should_post_tweet is True if should_post_tweet: try: post = {"title": post_data["title"], "url": post_url} tweet = generate_article_tweet(author, post, author["persona"]) if post_tweet(author, tweet): logging.info(f"Successfully posted article tweet for {author['username']} on X") else: logging.warning(f"Failed to post article tweet for {author['username']} on X") except Exception as e: logging.error(f"Error posting article tweet for {author['username']}: {e}") logging.info(f"Posted/Updated by {author['username']}: {post_data['title']} (ID: {post_id})") return post_id, post_url except requests.exceptions.RequestException as e: logging.error(f"WP API request failed: {e} - Response: {e.response.text if e.response else 'No response'}") print(f"WP Error: {e}") return None, None except KeyError as e: logging.error(f"WP payload error - Missing key: {e} - Author data: {author}") print(f"WP Error: {e}") return None, None except Exception as e: logging.error(f"WP posting failed: {e}") print(f"WP Error: {e}") return None, None # Configure Flickr API with credentials flickr_api.set_keys(api_key=FLICKR_API_KEY, api_secret=FLICKR_API_SECRET) logging.info(f"Flickr API configured with key: {FLICKR_API_KEY[:4]}... and secret: {FLICKR_API_SECRET[:4]}...") # Global variable to track the last Flickr request time last_flickr_request_time = 0 # Flickr request counter flickr_request_count = 0 flickr_request_start_time = time.time() # Define exclude keywords for filtering unwanted image types exclude_keywords = [ "poster", "infographic", "chart", "graph", "data", "stats", "text", "typography", "design", "advertisement", "illustration", "diagram", "layout", "print" ] # Initialize used_images as a set to track used image URLs used_images_file = "/home/shane/foodie_automator/used_images.json" used_images = set() # Load used images from file if it exists if os.path.exists(used_images_file): try: entries = load_json_file(used_images_file, IMAGE_EXPIRATION_DAYS * 24) # Use load_json_file for consistency for entry in entries: if isinstance(entry, dict) and "title" in entry and entry["title"].startswith('https://'): used_images.add(entry["title"]) else: logging.warning(f"Skipping invalid entry in {used_images_file}: {entry}") logging.info(f"Loaded {len(used_images)} used image URLs from {used_images_file}") except Exception as e: logging.warning(f"Failed to load used images from {used_images_file}: {e}. Resetting to empty set.") used_images = set() with open(used_images_file, 'w') as f: f.write("") # Function to save used_images to file def save_used_images(): try: # Load existing entries to preserve timestamps entries = load_json_file(used_images_file, IMAGE_EXPIRATION_DAYS * 24) existing_entries = {entry["title"]: entry for entry in entries if isinstance(entry, dict) and "title" in entry} # Create new entries for used_images timestamp = datetime.now(timezone.utc).isoformat() updated_entries = [] for url in used_images: if url in existing_entries: updated_entries.append(existing_entries[url]) else: updated_entries.append({"title": url, "timestamp": timestamp}) with open(used_images_file, 'w') as f: for entry in updated_entries: f.write(json.dumps(entry) + '\n') logging.info(f"Saved {len(updated_entries)} used image URLs to {used_images_file}") except Exception as e: logging.warning(f"Failed to save used images to {used_images_file}: {e}") def reset_flickr_request_count(): global flickr_request_count, flickr_request_start_time if time.time() - flickr_request_start_time >= 3600: # Reset every hour flickr_request_count = 0 flickr_request_start_time = time.time() def process_photo(photo, search_query): tags = [tag.text.lower() for tag in photo.getTags()] title = photo.title.lower() if photo.title else "" matched_keywords = [kw for kw in exclude_keywords if kw in tags or kw in title] if matched_keywords: logging.info(f"Skipping image with unwanted keywords: {photo.id} (tags: {tags}, title: {title}, matched: {matched_keywords})") return None # Try 'Large' size first, fall back to 'Medium' if unavailable img_url = None try: img_url = photo.getPhotoFile(size_label='Large') except flickr_api.flickrerrors.FlickrError as e: logging.info(f"Large size not available for photo {photo.id}: {e}, trying Medium") try: img_url = photo.getPhotoFile(size_label='Medium') except flickr_api.flickrerrors.FlickrError as e: logging.warning(f"Medium size not available for photo {photo.id}: {e}") return None if not img_url: logging.info(f"Image URL invalid for photo {photo.id}") return None # Check if the image is highly relevant to the query query_keywords = set(search_query.lower().split()) photo_keywords = set(tags + title.split()) is_relevant = bool(query_keywords & photo_keywords) # Check if any query keyword is in tags or title # Allow reuse of highly relevant images if img_url in used_images and not is_relevant: logging.info(f"Image already used and not highly relevant for photo {photo.id}: {img_url}") return None uploader = photo.owner.username page_url = f"https://www.flickr.com/photos/{photo.owner.nsid}/{photo.id}" used_images.add(img_url) save_used_images() flickr_data = { "title": search_query, "image_url": img_url, "source": "Flickr", "uploader": uploader, "page_url": page_url, "timestamp": datetime.now(timezone.utc).isoformat() } flickr_file = "/home/shane/foodie_automator/flickr_images.json" with open(flickr_file, 'a') as f: json.dump(flickr_data, f) f.write('\n') logging.info(f"Saved Flickr image metadata to {flickr_file}: {img_url}") logging.info(f"Selected Flickr image: {img_url} by {uploader} for query '{search_query}' (tags: {tags})") return img_url, "Flickr", uploader, page_url def search_flickr(query, per_page=5): try: photos = flickr_api.Photo.search( text=query, per_page=per_page, sort='relevance', safe_search=1, media='photos', license='4,5,9,10' ) return photos except Exception as e: logging.warning(f"Flickr API error for query '{query}': {e}") return [] def fetch_photo_by_id(photo_id): try: photo = flickr_api.Photo(id=photo_id) return photo except Exception as e: logging.warning(f"Failed to fetch Flickr photo ID {photo_id}: {e}") return None def search_ddg_for_flickr(query): ddg_query = f"{query} site:flickr.com" ddg_url = f"https://duckduckgo.com/?q={quote(ddg_query)}" try: response = requests.get(ddg_url, headers={'User-Agent': 'InsiderFoodieBot/1.0 (https://insiderfoodie.com; contact@insiderfoodie.com)'}, timeout=10) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') photo_ids = set() for link in soup.find_all('a', href=True): href = link['href'] match = re.search(r'flickr\.com/photos/[^/]+/(\d+)', href) if match: photo_id = match.group(1) photo_ids.add(photo_id) photo_ids = list(photo_ids)[:2] # Limit to 2 IDs logging.info(f"Found {len(photo_ids)} Flickr photo IDs via DDG: {photo_ids}") return photo_ids except Exception as e: logging.warning(f"DDG search failed for query '{ddg_query}': {e}") return set() def classify_keywords(keywords): prompt = ( "Given the following keywords from an image search query, classify each as 'specific' (e.g., brand names, unique entities like 'Taco Bell' or 'Paris') or 'generic' (e.g., common or abstract terms like 'dining' or 'trends'). " "Return a JSON object mapping each keyword to its classification.\n\n" "Keywords: " + ", ".join(keywords) + "\n\n" "Example output format (do not use these exact keywords in your response):\n" "```json\n" "{\n" " \"keyword1\": \"specific\",\n" " \"keyword2\": \"generic\"\n" "}\n```" ) try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": "You are a helper that classifies keywords."}, {"role": "user", "content": prompt} ], max_tokens=100, temperature=0.5 ) raw_response = response.choices[0].message.content json_match = re.search(r'```json\n([\s\S]*?)\n```', raw_response) if not json_match: logging.warning(f"Failed to parse keyword classification JSON: {raw_response}") return {kw: "specific" for kw in keywords} classifications = json.loads(json_match.group(1)) return classifications except Exception as e: logging.warning(f"Keyword classification failed: {e}. Defaulting to all specific.") return {kw: "specific" for kw in keywords} def get_flickr_image(search_query, relevance_keywords, main_topic): global last_flickr_request_time, flickr_request_count reset_flickr_request_count() flickr_request_count += 1 logging.info(f"Flickr request count: {flickr_request_count}/3600") current_time = time.time() time_since_last_request = current_time - last_flickr_request_time if time_since_last_request < 10: time.sleep(10 - time_since_last_request) last_flickr_request_time = time.time() # Step 1: Search Flickr directly with the original query logging.info(f"Searching Flickr directly with query: '{search_query}'") photos = search_flickr(search_query) for photo in photos: result = process_photo(photo, search_query) if result: return result # Step 2: Search DDG to find Flickr photo IDs logging.info(f"Searching DDG with query: '{search_query} site:flickr.com'") photo_ids = search_ddg_for_flickr(search_query) if photo_ids: for photo_id in photo_ids: photo = fetch_photo_by_id(photo_id) if photo: result = process_photo(photo, search_query) if result: return result # Step 3: Break down the query into keywords and classify them keywords = search_query.lower().split() if len(keywords) > 1: classifications = classify_keywords(keywords) logging.info(f"Keyword classifications: {classifications}") specific_keywords = [kw for kw, classification in classifications.items() if classification == "specific"] if specific_keywords: for keyword in specific_keywords: logging.info(f"Searching Flickr with specific keyword: '{keyword}'") photos = search_flickr(keyword) for photo in photos: result = process_photo(photo, search_query) if result: return result # Step 4: Fallback using main topic logging.info(f"No results found. Falling back to main topic: '{main_topic}'") photos = search_flickr(main_topic) for photo in photos: result = process_photo(photo, main_topic) if result: return result # Step 5: Final fallback using relevance keywords fallback_query = " ".join(relevance_keywords) if isinstance(relevance_keywords, list) else relevance_keywords logging.info(f"No results with main topic. Falling back to relevance keywords: '{fallback_query}'") photos = search_flickr(fallback_query) for photo in photos: result = process_photo(photo, search_query) if result: return result logging.warning(f"No valid Flickr image found for query '{search_query}' after all attempts.") return None, None, None, None def select_best_author(summary): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Based on this restaurant/food industry trend summary, pick the most suitable author from: " "owenjohnson, javiermorales, aishapatel, trangnguyen, keishareid, lilamoreau. " "Consider their expertise: owenjohnson (global dining trends), javiermorales (food critique), " "aishapatel (emerging food trends), trangnguyen (cultural dining), keishareid (soul food heritage), " "lilamoreau (global street food). Return only the username." )}, {"role": "user", "content": summary} ], max_tokens=20 ) author = response.choices[0].message.content.strip() valid_authors = ["owenjohnson", "javiermorales", "aishapatel", "trangnguyen", "keishareid", "lilamoreau"] logging.info(f"Selected author: {author}") return author if author in valid_authors else "owenjohnson" except Exception as e: logging.error(f"Author selection failed: {e}") return "owenjohnson" def prepare_post_data(summary, title, main_topic=None): try: logging.info(f"Preparing post data for summary: {summary[:100]}...") prompt = ( "Generate a concise, engaging title (5-15 words) for this food-related article summary. " "The title should be catchy, avoid emojis, and not reproduce the original title verbatim. " "Return the title as plain text." ) response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": summary} ], max_tokens=50, temperature=0.7 ) new_title = response.choices[0].message.content.strip() logging.info(f"Generated new title: '{new_title}'") search_query, relevance_keywords, skip_flag = smart_image_and_filter(new_title, summary) if skip_flag: logging.info("Summary filtered out during post preparation") return None, None, None, None, None, None, None image_url, image_source, uploader, page_url = get_flickr_image(search_query, relevance_keywords, main_topic) if not image_url: image_url, image_source, uploader, page_url = get_image(search_query) if not image_url: logging.warning("No image found for post, skipping") return None, None, None, None, None, None, None pixabay_url = page_url if image_source == "Pixabay" else None authors = ["Aisha Patel", "Ravi Sharma", "Mei Lin", "Carlos Rivera"] author = random.choice(authors) categories = ["Food", "Trends", "Eats", "Culture"] category = random.choice(categories) post_data = { "title": new_title, "content": summary, "status": "publish", "author": author, "categories": [category] } logging.info(f"Post data prepared: Title: '{new_title}', Category: {category}, Author: {author}") return post_data, author, category, image_url, image_source, uploader, pixabay_url except Exception as e: logging.error(f"Failed to prepare post data: {e}") return None, None, None, None, None, None, None def save_post_to_recent(post_title, post_url, author_username, timestamp): try: recent_posts = load_json_file('/home/shane/foodie_automator/recent_posts.json', 24) # Added expiration_hours entry = { "title": post_title, "url": post_url, "author_username": author_username, "timestamp": timestamp } recent_posts.append(entry) with open('/home/shane/foodie_automator/recent_posts.json', 'w') as f: for item in recent_posts: json.dump(item, f) f.write('\n') logging.info(f"Saved post '{post_title}' to recent_posts.json") except Exception as e: logging.error(f"Failed to save post to recent_posts.json: {e}") def prune_recent_posts(): try: cutoff = (datetime.now(timezone.utc) - timedelta(hours=24)).isoformat() recent_posts = load_json_file('/home/shane/foodie_automator/recent_posts.json') recent_posts = [entry for entry in recent_posts if entry["timestamp"] > cutoff] with open('/home/shane/foodie_automator/recent_posts.json', 'w') as f: for item in recent_posts: json.dump(item, f) f.write('\n') logging.info(f"Pruned recent_posts.json to {len(recent_posts)} entries") except Exception as e: logging.error(f"Failed to prune recent_posts.json: {e}")