import base64 import json import logging import os import random import re from PIL import Image import pytesseract import io import tempfile import requests import time import openai from dotenv import load_dotenv from datetime import datetime, timezone, timedelta from openai import OpenAI from urllib.parse import quote from bs4 import BeautifulSoup from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry import tweepy import flickr_api from foodie_config import ( RECIPE_KEYWORDS, PROMO_KEYWORDS, HOME_KEYWORDS, PRODUCT_KEYWORDS, PERSONA_CONFIGS, get_clean_source_name, AUTHORS, LIGHT_TASK_MODEL, SUMMARY_MODEL, X_API_CREDENTIALS, FLICKR_API_KEY, FLICKR_API_SECRET, PIXABAY_API_KEY ) load_dotenv() client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) def load_json_file(filename, expiration_days=None): data = [] if os.path.exists(filename): try: with open(filename, 'r') as f: lines = f.readlines() for i, line in enumerate(lines, 1): if line.strip(): try: entry = json.loads(line.strip()) if not isinstance(entry, dict) or "title" not in entry or "timestamp" not in entry: logging.warning(f"Skipping malformed entry in {filename} at line {i}: {entry}") continue data.append(entry) except json.JSONDecodeError as e: logging.warning(f"Skipping invalid JSON line in {filename} at line {i}: {e}") if expiration_days: cutoff = (datetime.now(timezone.utc) - timedelta(days=expiration_days)).isoformat() data = [entry for entry in data if entry["timestamp"] > cutoff] logging.info(f"Loaded {len(data)} entries from {filename}, {len(data)} valid after expiration check") except Exception as e: logging.error(f"Failed to load {filename}: {e}") data = [] # Reset to empty on failure return data def save_json_file(filename, key, value): entry = {"title": key, "timestamp": value} PRUNE_INTERVAL_DAYS = 180 try: data = load_json_file(filename, expiration_days=PRUNE_INTERVAL_DAYS) # Remove duplicates by title data = [item for item in data if item["title"] != key] data.append(entry) with open(filename, 'w') as f: for item in data: json.dump(item, f) f.write('\n') logging.info(f"Saved '{key}' to {filename}") print(f"DEBUG: Saved '{key}' to {filename}") loaded_data = load_json_file(filename, expiration_days=PRUNE_INTERVAL_DAYS) logging.info(f"Pruned {filename} to {len(loaded_data)} entries (older than {PRUNE_INTERVAL_DAYS} days removed)") except Exception as e: logging.error(f"Failed to save or prune {filename}: {e}") def load_post_counts(): counts = [] filename = '/home/shane/foodie_automator/x_post_counts.json' if os.path.exists(filename): try: with open(filename, 'r') as f: lines = f.readlines() for i, line in enumerate(lines, 1): if line.strip(): try: entry = json.loads(line.strip()) # Check for expected fields in x_post_counts.json if not isinstance(entry, dict) or "username" not in entry or "month" not in entry or "monthly_count" not in entry or "day" not in entry or "daily_count" not in entry: logging.warning(f"Skipping malformed entry in {filename} at line {i}: {entry}") continue counts.append(entry) except json.JSONDecodeError as e: logging.warning(f"Skipping invalid JSON line in {filename} at line {i}: {e}") logging.info(f"Loaded {len(counts)} entries from {filename}") except Exception as e: logging.error(f"Failed to load {filename}: {e}") counts = [] # Reset to empty on failure if not counts: counts = [{ "username": author["username"], "month": datetime.now(timezone.utc).strftime("%Y-%m"), "monthly_count": 0, "day": datetime.now(timezone.utc).strftime("%Y-%m-%d"), "daily_count": 0 } for author in AUTHORS] current_month = datetime.now(timezone.utc).strftime("%Y-%m") current_day = datetime.now(timezone.utc).strftime("%Y-%m-%d") for entry in counts: if entry["month"] != current_month: entry["month"] = current_month entry["monthly_count"] = 0 if entry["day"] != current_day: entry["day"] = current_day entry["daily_count"] = 0 return counts def save_post_counts(counts): with open('/home/shane/foodie_automator/x_post_counts.json', 'w') as f: for item in counts: json.dump(item, f) f.write('\n') logging.info("Saved post counts to x_post_counts.json") import re def generate_article_tweet(author, post, persona): title = post["title"] url = post["url"] author_handle = f"@{author['username']}" prompt = ( f"Craft a sharp tweet (under 280 characters) for {author_handle} with the voice of '{persona}'. " f"Distill the essence of the article '{title}' and include the raw URL '{url}' at the end. " f"Make it bold, spark curiosity, and invite engagement with a human touch. " f"Swap 'elevate' for dynamic terms like 'ignite' or 'unleash'. " f"Absolutely do not include hashtags, emojis, or phrases like '[Read more]' or 'Read more'. " f"Skip any extra fluff or formatting around the URL—just append the raw URL after a space." ) response = openai.chat.completions.create( model=SUMMARY_MODEL, messages=[ {"role": "system", "content": "You are a social media viral expert crafting engaging tweets."}, {"role": "user", "content": prompt} ], max_tokens=100, temperature=0.7 ) tweet = response.choices[0].message.content.strip() # Post-generation check: Strip any emojis using regex tweet = re.sub(r'[\U0001F600-\U0001F64F\U0001F300-\U0001F5FF\U0001F680-\U0001F6FF\U0001F700-\U0001F77F\U0001F780-\U0001F7FF\U0001F800-\U0001F8FF\U0001F900-\U0001F9FF\U0001FA00-\U0001FA6F\U0001FA70-\U0001FAFF\U00002702-\U000027B0\U000024C2-\U0001F251]', '', tweet).strip() # Optionally, strip "[Read more]" or similar phrases as an additional failsafe tweet = re.sub(r'\[Read more\]\(.*?\)|\bRead more\b', '', tweet).strip() if len(tweet) > 280: tweet = tweet[:277] + "..." return tweet def post_tweet(author, tweet): credentials = next((cred for cred in X_API_CREDENTIALS if cred["username"] == author["username"]), None) if not credentials: logging.error(f"No X credentials found for {author['username']}") return False post_counts = load_post_counts() author_count = next((entry for entry in post_counts if entry["username"] == author["username"]), None) if author_count["monthly_count"] >= 500: logging.warning(f"Monthly post limit (500) reached for {author['username']}") return False if author_count["daily_count"] >= 20: logging.warning(f"Daily post limit (20) reached for {author['username']}") return False try: client = tweepy.Client( consumer_key=credentials["api_key"], consumer_secret=credentials["api_secret"], access_token=credentials["access_token"], access_token_secret=credentials["access_token_secret"] ) response = client.create_tweet(text=tweet) author_count["monthly_count"] += 1 author_count["daily_count"] += 1 save_post_counts(post_counts) logging.info(f"Posted tweet for {author['username']}: {tweet}") return True except Exception as e: logging.error(f"Failed to post tweet for {author['username']}: {e}") return False def select_best_persona(interest_score, content=""): logging.info("Using select_best_persona with interest_score and content") personas = ["Visionary Editor", "Foodie Critic", "Trend Scout", "Culture Connoisseur"] content_lower = content.lower() if any(kw in content_lower for kw in ["tech", "ai", "innovation", "sustainability"]): return random.choice(["Trend Scout", "Visionary Editor"]) elif any(kw in content_lower for kw in ["review", "critic", "taste", "flavor"]): return "Foodie Critic" elif any(kw in content_lower for kw in ["culture", "tradition", "history"]): return "Culture Connoisseur" if interest_score >= 8: return random.choice(personas[:2]) elif interest_score >= 6: return random.choice(personas[2:]) return random.choice(personas) def get_image(search_query): global last_flickr_request_time, flickr_request_count reset_flickr_request_count() flickr_request_count += 1 logging.info(f"Flickr request count: {flickr_request_count}/3600") # Enforce a minimum delay of 1 second between Flickr requests current_time = time.time() time_since_last_request = current_time - last_flickr_request_time if time_since_last_request < 1: time.sleep(1 - time_since_last_request) last_flickr_request_time = time.time() try: # Try Flickr API first photos = flickr_api.Photo.search( text=search_query, per_page=10, sort='relevance', safe_search=1, media='photos', license='4,5,9,10' # Commercial use licenses ) headers = {'User-Agent': 'InsiderFoodieBot/1.0 (https://insiderfoodie.com; contact@insiderfoodie.com)'} for photo in photos: # Fetch photo metadata (tags and title) tags = [tag.text.lower() for tag in photo.getTags()] title = photo.title.lower() if photo.title else "" # Filter out images with unwanted keywords in tags or title matched_keywords = [kw for kw in exclude_keywords if kw in tags or kw in title] if matched_keywords: logging.info(f"Skipping image with unwanted keywords: {photo.id} (tags: {tags}, title: {title}, matched: {matched_keywords})") continue img_url = photo.getPhotoFile(size_label='Medium') if not img_url: continue if img_url in used_images: continue # Download the image and run OCR to check for excessive text temp_file = None try: img_response = requests.get(img_url, headers=headers, timeout=10) img_response.raise_for_status() with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as temp_file: temp_file.write(img_response.content) temp_path = temp_file.name img = Image.open(temp_path) text = pytesseract.image_to_string(img) char_count = len(text.strip()) logging.info(f"OCR processed {img_url}: {char_count} characters detected") if char_count > 200: logging.info(f"Skipping text-heavy image (OCR): {img_url} (char_count: {char_count})") continue uploader = photo.owner.username page_url = f"https://www.flickr.com/photos/{photo.owner.nsid}/{photo.id}" # Save Flickr image metadata flickr_data = { "title": search_query, "image_url": img_url, "source": "Flickr", "uploader": uploader, "page_url": page_url, "timestamp": datetime.now(timezone.utc).isoformat(), "ocr_chars": char_count } flickr_file = "/home/shane/foodie_automator/flickr_images.json" with open(flickr_file, 'a') as f: json.dump(flickr_data, f) f.write('\n') logging.info(f"Saved Flickr image to {flickr_file}: {img_url}") logging.info(f"Fallback Flickr image: {img_url} by {uploader} for query '{search_query}' (tags: {tags})") return img_url, "Flickr", uploader, page_url except requests.exceptions.HTTPError as e: if e.response.status_code == 429: logging.warning(f"Rate limit hit for {img_url}. Falling back to Pixabay.") return None, None, None, None else: logging.warning(f"Download failed for {img_url}: {e}") continue except Exception as e: logging.warning(f"OCR processing failed for {img_url}: {e}") continue finally: if temp_file and os.path.exists(temp_path): os.unlink(temp_path) logging.warning(f"No valid Flickr image found in fallback for query '{search_query}'. Trying Pixabay.") except Exception as e: logging.warning(f"Fallback Flickr API error for query '{search_query}': {e}. Falling back to Pixabay.") # Fallback to Pixabay try: pixabay_url = f"https://pixabay.com/api/?key={PIXABAY_API_KEY}&q={quote(search_query)}&image_type=photo&per_page=10" response = requests.get(pixabay_url, timeout=10) response.raise_for_status() data = response.json() for hit in data.get('hits', []): img_url = hit.get('webformatURL') if not img_url or img_url in used_images: continue uploader = hit.get('user', 'Unknown') page_url = hit.get('pageURL', img_url) logging.debug(f"Image selected for query '{search_query}': {img_url}") return img_url, "Pixabay", uploader, page_url logging.warning(f"No valid Pixabay image found for query '{search_query}'.") return None, None, None, None except Exception as e: logging.error(f"Pixabay image fetch failed for query '{search_query}': {e}") return None, None, None, None def generate_image_query(content): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "From this content (title and summary), generate two sets of 2-3 concise keywords for an image search about restaurant/food industry trends:\n" "1. Search keywords: For finding images (e.g., 'AI restaurant technology'). Focus on key themes like technology, sustainability, dining, or specific food concepts.\n" "2. Relevance keywords: For filtering relevant images (e.g., 'ai tech dining'). Focus on core concepts to ensure match.\n" "Avoid vague terms like 'trends', 'future', or unrelated words like 'dog', 'family'. " "Return as JSON: {'search': 'keyword1 keyword2', 'relevance': 'keyword3 keyword4'}" )}, {"role": "user", "content": content} ], max_tokens=100 ) raw_result = response.choices[0].message.content.strip() logging.info(f"Raw GPT image query response: '{raw_result}'") print(f"DEBUG: Raw GPT image query response: '{raw_result}'") cleaned_result = re.sub(r'```json\s*|\s*```', '', raw_result).strip() result = json.loads(cleaned_result) if not isinstance(result, dict) or "search" not in result or "relevance" not in result or len(result["search"].split()) < 2: logging.warning(f"Invalid image query format: {result}, using fallback") words = re.findall(r'\w+', content.lower()) filtered_words = [w for w in words if w not in RECIPE_KEYWORDS + PROMO_KEYWORDS + ['trends', 'future', 'dog', 'family']] search = " ".join(filtered_words[:3]) or "restaurant innovation" relevance = filtered_words[3:6] or ["dining", "tech"] result = {"search": search, "relevance": " ".join(relevance)} logging.info(f"Generated image query: {result}") print(f"DEBUG: Image query from content: {result}") return result["search"], result["relevance"].split() except json.JSONDecodeError as e: logging.error(f"JSON parsing failed for image query: {e}, raw response: '{raw_result}'") words = re.findall(r'\w+', content.lower()) filtered_words = [w for w in words if w not in RECIPE_KEYWORDS + PROMO_KEYWORDS + ['trends', 'future', 'dog', 'family']] search = " ".join(filtered_words[:3]) or "restaurant innovation" relevance = filtered_words[3:6] or ["dining", "tech"] logging.info(f"Fallback image query: {{'search': '{search}', 'relevance': '{' '.join(relevance)}'}}") return search, relevance except Exception as e: logging.error(f"Image query generation failed: {e}") print(f"Image Query Error: {e}") return None, None def smart_image_and_filter(title, summary): try: content = f"{title}\n\n{summary}" prompt = ( "Analyze this article title and summary. Extract key entities (brands, locations, cuisines, or topics) " "for an image search about food industry trends or viral content. Prioritize specific terms if present, " "otherwise focus on the main theme. " "Return 'SKIP' if the article is about home appliances, recipes, promotions, or contains 'homemade', else 'KEEP'. " "Return as JSON with double quotes for all property names and string values (e.g., {\"image_query\": \"specific term\", \"relevance\": [\"keyword1\", \"keyword2\"], \"action\": \"KEEP\" or \"SKIP\"})." ) response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": content} ], max_tokens=100 ) raw_result = response.choices[0].message.content.strip() logging.info(f"Raw GPT smart image/filter response: '{raw_result}'") # Remove ```json markers and fix single quotes in JSON structure cleaned_result = re.sub(r'```json\s*|\s*```', '', raw_result).strip() # Replace single quotes with double quotes, but preserve single quotes within string values fixed_result = re.sub(r"(?{image_source} by {uploader}' if pixabay_url and uploader else image_source requests.post( f"{wp_base_url}/media/{image_id}", headers={"Authorization": headers["Authorization"], "Content-Type": "application/json"}, json={"caption": caption} ) logging.info(f"Uploaded image '{safe_title}.jpg' to WP (ID: {image_id}) with caption '{caption}'") return image_id except Exception as e: logging.error(f"Image upload to WP failed for '{post_title}': {e}") return None def determine_paragraph_count(interest_score): if interest_score >= 9: return 5 elif interest_score >= 7: return 4 return 3 def is_interesting(summary): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Rate this content from 0-10 based on its rarity, buzzworthiness, and engagement potential for food lovers, covering a wide range of food topics (skip recipes). " "Score 8-10 for rare, highly shareable ideas that grab attention. " "Score 5-7 for fresh, engaging updates with broad appeal. Score below 5 for common or unremarkable content. " "Return only a number." )}, {"role": "user", "content": f"Content: {summary}"} ], max_tokens=5 ) raw_score = response.choices[0].message.content.strip() score = int(raw_score) if raw_score.isdigit() else 0 print(f"Interest Score for '{summary[:50]}...': {score} (raw: {raw_score})") logging.info(f"Interest Score: {score} (raw: {raw_score})") return score except Exception as e: logging.error(f"Interestingness scoring failed: {e}") print(f"Interest Error: {e}") return 0 def generate_title_from_summary(summary): banned_words = ["elevate", "elevating", "elevated"] for attempt in range(3): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Generate a concise, engaging title (under 100 characters) based on this summary, covering food topics. " "Craft it with Upworthy/Buzzfeed flair—think ‘you won’t believe this’ or ‘this is nuts’—for food insiders. " "Avoid quotes, emojis, special characters, or the words 'elevate', 'elevating', 'elevated'. " "End with a question to spark shares." )}, {"role": "user", "content": f"Summary: {summary}"} ], max_tokens=30 ) title = response.choices[0].message.content.strip().replace('"', '').replace("'", "") if ':' in title: title = title.split(':', 1)[1].strip() if len(title) > 100 or any(word in title.lower() for word in banned_words): reason = "length" if len(title) > 100 else "banned word" print(f"Rejected title (attempt {attempt + 1}/3): '{title}' due to {reason}") logging.info(f"Rejected title (attempt {attempt + 1}/3): '{title}' due to {reason}") continue logging.info(f"Generated title: {title}") return title except Exception as e: logging.error(f"Title generation failed (attempt {attempt + 1}/3): {e}") print(f"Title Error: {e}") print("Failed to generate valid title after 3 attempts") logging.info("Failed to generate valid title after 3 attempts") return None def summarize_with_gpt4o(content, source_name, link, interest_score=0, extra_prompt=""): try: persona = select_best_persona(interest_score, content) persona_config = PERSONA_CONFIGS.get(persona, { "article_prompt": "Write a concise, engaging summary that captures the essence of the content for food lovers.", "description": "a generic food writer", "tone": "an engaging tone" }) prompt = persona_config["article_prompt"].format( description=persona_config["description"], tone=persona_config["tone"], num_paragraphs=determine_paragraph_count(interest_score) ) logging.info(f"Using {persona} with interest_score and content") full_prompt = ( f"{prompt}\n\n" f"{extra_prompt}\n\n" f"Avoid using the word 'elevate'—use more humanized language like 'level up' or 'bring to life'.\n" f"Content to summarize:\n{content}\n\n" f"Source: {source_name}\n" f"Link: {link}" ) response = client.chat.completions.create( model=SUMMARY_MODEL, messages=[ {"role": "system", "content": full_prompt}, {"role": "user", "content": content} ], max_tokens=1000, temperature=0.7 ) summary = response.choices[0].message.content.strip() logging.info(f"Processed summary (Persona: {persona}): {summary}") return summary except Exception as e: logging.error(f"Summary generation failed with model {SUMMARY_MODEL}: {e}") return None def insert_link_naturally(summary, source_name, source_url): try: # Log the input summary to debug its structure logging.info(f"Input summary to insert_link_naturally: {summary!r}") prompt = ( "Take this summary and insert a single HTML link naturally into one paragraph (randomly chosen). " "Use the format '{source_name}' and weave it into the text seamlessly, " "e.g., 'The latest scoop from {source_name} reveals...' or '{source_name} uncovers this wild shift.' " "Vary the phrasing creatively to avoid repetition (don’t always use 'dives into'). " "Place the link at a sentence boundary (after a period, not within numbers like '6.30am' or '1.5'). " "Maintain the original tone, flow, and paragraph structure, preserving all existing newlines exactly as they are. " "Each paragraph in the input summary is separated by a single \\n; ensure the output maintains this exact separation. " "Do not add or remove newlines beyond the original summary structure. " "Return the modified summary with exactly one link.\n\n" "Summary:\n{summary}\n\n" "Source Name: {source_name}\nSource URL: {source_url}" ).format(summary=summary, source_name=source_name, source_url=source_url) response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": "Insert the link naturally into the summary."} ], max_tokens=1000, temperature=0.7 ) new_summary = response.choices[0].message.content.strip() link_pattern = f'{source_name}' if new_summary and new_summary.count(link_pattern) == 1: # Normalize paragraph separation to ensure a single \n break # Split by newlines, but do not filter out paragraphs to preserve the count paragraphs = new_summary.split('\n') # Strip each paragraph, but keep all paragraphs even if empty paragraphs = [p.strip() for p in paragraphs] new_summary = '\n'.join(paragraphs) logging.info(f"Summary with naturally embedded link (normalized): {new_summary!r}") return new_summary logging.warning(f"GPT failed to insert link correctly: {new_summary}. Using fallback.") except Exception as e: logging.error(f"Link insertion failed: {e}") # Fallback path time_pattern = r'\b\d{1,2}\.\d{2}(?:am|pm)\b' protected_summary = re.sub(time_pattern, lambda m: m.group(0).replace('.', '@'), summary) paragraphs = protected_summary.split('\n') if not paragraphs or all(not p.strip() for p in paragraphs): logging.error("No valid paragraphs to insert link.") return summary target_para = random.choice([p for p in paragraphs if p.strip()]) phrases = [ f"The scoop from {link_pattern} spills the details", f"{link_pattern} uncovers this wild shift", f"This gem via {link_pattern} drops some truth", f"{link_pattern} breaks down the buzz" ] insertion_phrase = random.choice(phrases) sentences = re.split(r'(?<=[.!?])\s+', target_para) insertion_point = -1 for i, sent in enumerate(sentences): if sent.strip() and '@' not in sent: insertion_point = sum(len(s) + 1 for s in sentences[:i+1]) break if insertion_point == -1: insertion_point = len(target_para) new_para = f"{target_para[:insertion_point]} {insertion_phrase}. {target_para[insertion_point:]}".strip() paragraphs[paragraphs.index(target_para)] = new_para new_summary = '\n'.join(paragraphs) new_summary = new_summary.replace('@', '.') logging.info(f"Fallback summary with link: {new_summary!r}") return new_summary def generate_category_from_summary(summary): try: if not isinstance(summary, str) or not summary.strip(): logging.warning(f"Invalid summary for category generation: {summary}. Defaulting to 'Trends'.") return "Trends" response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Based on this summary, select the most relevant category from: Food, Culture, Trends, Health, Lifestyle, Drink, Eats. " "Return only the category name." )}, {"role": "user", "content": summary} ], max_tokens=10 ) category = response.choices[0].message.content.strip() logging.info(f"Generated category: {category}") return category if category in ["Food", "Culture", "Trends", "Health", "Lifestyle", "Drink", "Eats"] else "Trends" except Exception as e: logging.error(f"Category generation failed: {e}") return "Trends" def get_wp_category_id(category_name, wp_base_url, wp_username, wp_password): try: headers = {"Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}"} response = requests.get(f"{wp_base_url}/categories", headers=headers, params={"search": category_name}) response.raise_for_status() categories = response.json() for cat in categories: if cat["name"].lower() == category_name.lower(): return cat["id"] return None except Exception as e: logging.error(f"Failed to get WP category ID for '{category_name}': {e}") return None def create_wp_category(category_name, wp_base_url, wp_username, wp_password): try: headers = { "Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}", "Content-Type": "application/json" } payload = {"name": category_name} response = requests.post(f"{wp_base_url}/categories", headers=headers, json=payload) response.raise_for_status() return response.json()["id"] except Exception as e: logging.error(f"Failed to create WP category '{category_name}': {e}") return None def get_wp_tag_id(tag_name, wp_base_url, wp_username, wp_password): try: headers = {"Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}"} response = requests.get(f"{wp_base_url}/tags", headers=headers, params={"search": tag_name}) response.raise_for_status() tags = response.json() for tag in tags: if tag["name"].lower() == tag_name.lower(): return tag["id"] return None except Exception as e: logging.error(f"Failed to get WP tag ID for '{tag_name}': {e}") return None def post_to_wp(post_data, category, link, author, image_url, original_source, image_source="Pixabay", uploader=None, pixabay_url=None, interest_score=4, post_id=None, should_post_tweet=True): wp_base_url = "https://insiderfoodie.com/wp-json/wp/v2" logging.info(f"Starting post_to_wp for '{post_data['title']}', image_source: {image_source}") if not isinstance(author, dict) or "username" not in author or "password" not in author: raise ValueError(f"Invalid author data: {author}. Expected a dictionary with 'username' and 'password' keys.") wp_username = author["username"] wp_password = author["password"] if not isinstance(interest_score, int): logging.error(f"Invalid interest_score type: {type(interest_score)}, value: '{interest_score}'. Defaulting to 4.") interest_score = 4 elif interest_score < 0 or interest_score > 10: logging.warning(f"interest_score out of valid range (0-10): {interest_score}. Clamping to 4.") interest_score = min(max(interest_score, 0), 10) try: headers = { "Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}", "Content-Type": "application/json" } auth_test = requests.get(f"{wp_base_url}/users/me", headers=headers) auth_test.raise_for_status() logging.info(f"Auth test passed for {wp_username}: {auth_test.json()['id']}") category_id = get_wp_category_id(category, wp_base_url, wp_username, wp_password) if not category_id: category_id = create_wp_category(category, wp_base_url, wp_username, wp_password) logging.info(f"Created new category '{category}' with ID {category_id}") else: logging.info(f"Found existing category '{category}' with ID {category_id}") tags = [1] if interest_score >= 9: picks_tag_id = get_wp_tag_id("Picks", wp_base_url, wp_username, wp_password) if picks_tag_id and picks_tag_id not in tags: tags.append(picks_tag_id) logging.info(f"Added 'Picks' tag (ID: {picks_tag_id}) to post due to high interest score: {interest_score}") content = post_data["content"] if content is None: logging.error(f"Post content is None for title '{post_data['title']}' - using fallback") content = "Content unavailable. Check the original source for details." formatted_content = "\n".join(f"

{para}

" for para in content.split('\n') if para.strip()) author_id_map = { "owenjohnson": 10, "javiermorales": 2, "aishapatel": 3, "trangnguyen": 12, "keishareid": 13, "lilamoreau": 7 } author_id = author_id_map.get(author["username"], 5) payload = { "title": post_data["title"], "content": formatted_content, "status": "publish", "categories": [category_id], "tags": tags, "author": author_id, "meta": { "original_link": link, "original_source": original_source, "interest_score": interest_score } } if image_url and not post_id: logging.info(f"Attempting image upload for '{post_data['title']}', URL: {image_url}, source: {image_source}") image_id = upload_image_to_wp(image_url, post_data["title"], wp_base_url, wp_username, wp_password, image_source, uploader, pixabay_url) if not image_id: logging.info(f"Flickr upload failed for '{post_data['title']}', falling back to Pixabay") pixabay_query = post_data["title"][:50] image_url, image_source, uploader, pixabay_url = get_image(pixabay_query) if image_url: image_id = upload_image_to_wp(image_url, post_data["title"], wp_base_url, wp_username, wp_password, image_source, uploader, pixabay_url) if image_id: payload["featured_media"] = image_id else: logging.warning(f"All image uploads failed for '{post_data['title']}' - posting without image") endpoint = f"{wp_base_url}/posts/{post_id}" if post_id else f"{wp_base_url}/posts" method = requests.post logging.debug(f"Sending WP request to {endpoint} with payload: {json.dumps(payload, indent=2)}") response = method(endpoint, headers=headers, json=payload) response.raise_for_status() post_info = response.json() logging.debug(f"WP response: {json.dumps(post_info, indent=2)}") if not isinstance(post_info, dict) or "id" not in post_info: raise ValueError(f"Invalid WP response: {post_info}") post_id = post_info["id"] post_url = post_info["link"] # Save to recent_posts.json timestamp = datetime.now(timezone.utc).isoformat() save_post_to_recent(post_data["title"], post_url, author["username"], timestamp) # Post article tweet to X only if should_post_tweet is True if should_post_tweet: try: post = {"title": post_data["title"], "url": post_url} tweet = generate_article_tweet(author, post, author["persona"]) if post_tweet(author, tweet): # Use the actual post_tweet function logging.info(f"Successfully posted article tweet for {author['username']} on X") else: logging.warning(f"Failed to post article tweet for {author['username']} on X") except Exception as e: logging.error(f"Error posting article tweet for {author['username']}: {e}") logging.info(f"Posted/Updated by {author['username']}: {post_data['title']} (ID: {post_id})") return post_id, post_url except requests.exceptions.RequestException as e: logging.error(f"WP API request failed: {e} - Response: {e.response.text if e.response else 'No response'}") print(f"WP Error: {e}") return None, None except KeyError as e: logging.error(f"WP payload error - Missing key: {e} - Author data: {author}") print(f"WP Error: {e}") return None, None except Exception as e: logging.error(f"WP posting failed: {e}") print(f"WP Error: {e}") return None, None # Configure Flickr API with credentials flickr_api.set_keys(api_key=FLICKR_API_KEY, api_secret=FLICKR_API_SECRET) logging.info(f"Flickr API configured with key: {FLICKR_API_KEY[:4]}... and secret: {FLICKR_API_SECRET[:4]}...") # Global variable to track the last Flickr request time last_flickr_request_time = 0 # Flickr request counter flickr_request_count = 0 flickr_request_start_time = time.time() # Define exclude keywords for filtering unwanted image types exclude_keywords = [ "poster", "infographic", "chart", "graph", "data", "stats", "text", "typography", "design", "advertisement", "illustration", "diagram", "layout", "print" ] def reset_flickr_request_count(): global flickr_request_count, flickr_request_start_time if time.time() - flickr_request_start_time >= 3600: # Reset every hour flickr_request_count = 0 flickr_request_start_time = time.time() def get_flickr_image(search_query, relevance_keywords): global last_flickr_request_time, flickr_request_count reset_flickr_request_count() flickr_request_count += 1 logging.info(f"Flickr request count: {flickr_request_count}/3600") # Enforce a minimum delay of 1 second between Flickr requests current_time = time.time() time_since_last_request = current_time - last_flickr_request_time if time_since_last_request < 1: time.sleep(1 - time_since_last_request) last_flickr_request_time = time.time() try: # Search for photos on Flickr using the API photos = flickr_api.Photo.search( text=search_query, per_page=10, sort='relevance', safe_search=1, media='photos', license='4,5,9,10' # Commercial use licenses (CC BY, CC BY-SA, etc.) ) headers = {'User-Agent': 'InsiderFoodieBot/1.0 (https://insiderfoodie.com; contact@insiderfoodie.com)'} for photo in photos: # Fetch photo metadata (tags and title) tags = [tag.text.lower() for tag in photo.getTags()] title = photo.title.lower() if photo.title else "" # Filter out images with unwanted keywords in tags or title matched_keywords = [kw for kw in exclude_keywords if kw in tags or kw in title] if matched_keywords: logging.info(f"Skipping image with unwanted keywords: {photo.id} (tags: {tags}, title: {title}, matched: {matched_keywords})") continue img_url = photo.getPhotoFile(size_label='Large') if not img_url: img_url = photo.getPhotoFile(size_label='Medium') if not img_url: continue if img_url in used_images: continue # Download the image and run OCR to check for excessive text temp_file = None try: img_response = requests.get(img_url, headers=headers, timeout=10) img_response.raise_for_status() with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as temp_file: temp_file.write(img_response.content) temp_path = temp_file.name img = Image.open(temp_path) text = pytesseract.image_to_string(img) char_count = len(text.strip()) logging.info(f"OCR processed {img_url}: {char_count} characters detected") if char_count > 200: logging.info(f"Skipping text-heavy image (OCR): {img_url} (char_count: {char_count})") continue uploader = photo.owner.username page_url = f"https://www.flickr.com/photos/{photo.owner.nsid}/{photo.id}" # Save Flickr image metadata flickr_data = { "title": search_query, "image_url": img_url, "source": "Flickr", "uploader": uploader, "page_url": page_url, "timestamp": datetime.now(timezone.utc).isoformat(), "ocr_chars": char_count } flickr_file = "/home/shane/foodie_automator/flickr_images.json" with open(flickr_file, 'a') as f: json.dump(flickr_data, f) f.write('\n') logging.info(f"Saved Flickr image to {flickr_file}: {img_url}") logging.info(f"Fetched Flickr image: {img_url} by {uploader} for query '{search_query}' (tags: {tags})") return img_url, "Flickr", uploader, page_url except requests.exceptions.HTTPError as e: if e.response.status_code == 429: logging.warning(f"Rate limit hit for {img_url}. Falling back to Pixabay.") return None, None, None, None else: logging.warning(f"Download failed for {img_url}: {e}") continue except Exception as e: logging.warning(f"OCR processing failed for {img_url}: {e}") continue finally: if temp_file and os.path.exists(temp_path): os.unlink(temp_path) logging.warning(f"No valid Flickr image found for query '{search_query}'.") return None, None, None, None except Exception as e: logging.warning(f"Flickr API error for query '{search_query}': {e}. Falling back to Pixabay.") return None, None, None, None def select_best_author(summary): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Based on this restaurant/food industry trend summary, pick the most suitable author from: " "owenjohnson, javiermorales, aishapatel, trangnguyen, keishareid, lilamoreau. " "Consider their expertise: owenjohnson (global dining trends), javiermorales (food critique), " "aishapatel (emerging food trends), trangnguyen (cultural dining), keishareid (soul food heritage), " "lilamoreau (global street food). Return only the username." )}, {"role": "user", "content": summary} ], max_tokens=20 ) author = response.choices[0].message.content.strip() valid_authors = ["owenjohnson", "javiermorales", "aishapatel", "trangnguyen", "keishareid", "lilamoreau"] logging.info(f"Selected author: {author}") return author if author in valid_authors else "owenjohnson" except Exception as e: logging.error(f"Author selection failed: {e}") return "owenjohnson" def prepare_post_data(final_summary, original_title, context_info=""): innovative_title = generate_title_from_summary(final_summary) if not innovative_title: logging.info(f"Title generation failed for '{original_title}' {context_info}") return None, None, None, None, None, None, None search_query, relevance_keywords = generate_image_query(f"{innovative_title}\n\n{final_summary}") if not search_query: logging.info(f"Image query generation failed for '{innovative_title}' {context_info}") return None, None, None, None, None, None, None logging.info(f"Fetching Flickr image for query: '{search_query}' {context_info}") image_url, image_source, uploader, page_url = get_flickr_image_via_ddg(search_query, relevance_keywords) if not image_url: logging.info(f"Flickr fetch failed for '{search_query}' - falling back to Pixabay {context_info}") image_query, _ = generate_image_query(f"{innovative_title}\n\n{final_summary}") image_url, image_source, uploader, page_url = get_image(image_query) if not image_url: logging.info(f"Pixabay fetch failed for title '{innovative_title}' - falling back to summary {context_info}") image_query, _ = generate_image_query(f"{final_summary}") image_url, image_source, uploader, page_url = get_image(image_query) if not image_url: logging.info(f"Image fetch failed again for '{original_title}' - proceeding without image {context_info}") post_data = {"title": innovative_title, "content": final_summary} selected_username = select_best_author(final_summary) author = next((a for a in AUTHORS if a["username"] == selected_username), None) if not author: logging.error(f"Author '{selected_username}' not found in AUTHORS, defaulting to owenjohnson") author = {"username": "owenjohnson", "password": "rfjk xhn6 2RPy FuQ9 cGlU K8mC"} category = generate_category_from_summary(final_summary) return post_data, author, category, image_url, image_source, uploader, page_url def save_post_to_recent(post_title, post_url, author_username, timestamp): try: recent_posts = load_json_file('/home/shane/foodie_automator/recent_posts.json') entry = { "title": post_title, "url": post_url, "author_username": author_username, "timestamp": timestamp } recent_posts.append(entry) with open('/home/shane/foodie_automator/recent_posts.json', 'w') as f: for item in recent_posts: json.dump(item, f) f.write('\n') logging.info(f"Saved post '{post_title}' to recent_posts.json") except Exception as e: logging.error(f"Failed to save post to recent_posts.json: {e}") def prune_recent_posts(): try: cutoff = (datetime.now(timezone.utc) - timedelta(hours=24)).isoformat() recent_posts = load_json_file('/home/shane/foodie_automator/recent_posts.json') recent_posts = [entry for entry in recent_posts if entry["timestamp"] > cutoff] with open('/home/shane/foodie_automator/recent_posts.json', 'w') as f: for item in recent_posts: json.dump(item, f) f.write('\n') logging.info(f"Pruned recent_posts.json to {len(recent_posts)} entries") except Exception as e: logging.error(f"Failed to prune recent_posts.json: {e}")