import base64 import json import logging import os import random import re from PIL import Image import pytesseract import io import tempfile import shutil import requests import time import openai import psutil from duckduckgo_search import DDGS from requests_oauthlib import OAuth1 from dotenv import load_dotenv from datetime import datetime, timezone, timedelta from openai import OpenAI from urllib.parse import quote from bs4 import BeautifulSoup from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry import tweepy import flickr_api from filelock import FileLock from foodie_config import ( RECIPE_KEYWORDS, PROMO_KEYWORDS, HOME_KEYWORDS, PRODUCT_KEYWORDS, PERSONA_CONFIGS, get_clean_source_name, AUTHORS, LIGHT_TASK_MODEL, SUMMARY_MODEL, X_API_CREDENTIALS, FLICKR_API_KEY, FLICKR_API_SECRET, PIXABAY_API_KEY, RECENT_POSTS_FILE, USED_IMAGES_FILE, IMAGE_EXPIRATION_DAYS ) from PIL import ImageEnhance, ImageFilter last_author_index = -1 # Global to track round-robin index round_robin_index = 0 # Define logger at module level logger = logging.getLogger(__name__) load_dotenv() client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) IMAGE_UPLOAD_TIMEOUT = 30 # Added to fix NameError IMAGE_EXPIRATION_DAYS = 7 # 7 days, consistent with foodie_automator_rss.py def load_json_file(file_path, expiration_hours=None, default=None): logger = logging.getLogger(__name__) if default is None: default = [] if "rate_limit_info" not in file_path else {} if not os.path.exists(file_path): logger.info(f"File {file_path} does not exist. Returning default: {default}") return default try: with open(file_path, 'r') as f: data = json.load(f) # Handle rate_limit_info.json differently if "rate_limit_info" in file_path: if not isinstance(data, dict): logger.warning(f"Data in {file_path} is not a dictionary, resetting to default") return default return data # For other files, expect a list if not isinstance(data, list): logger.warning(f"Data in {file_path} is not a list, resetting to default") return default if expiration_hours is not None: # Use days for used_images.json, hours for others if "used_images" in file_path: expiration_delta = timedelta(days=expiration_hours) else: expiration_delta = timedelta(hours=expiration_hours) cutoff = datetime.now(timezone.utc) - expiration_delta filtered_data = [] for entry in data: if not isinstance(entry, dict) or "title" not in entry or "timestamp" not in entry: logger.warning(f"Skipping malformed entry in {file_path}: {entry}") continue try: timestamp = datetime.fromisoformat(entry["timestamp"]) if timestamp > cutoff: filtered_data.append(entry) except ValueError as e: logger.warning(f"Invalid timestamp in {file_path} entry {entry}: {e}") continue if len(filtered_data) < len(data): logger.info(f"Filtered {len(data) - len(filtered_data)} expired entries from {file_path}") save_json_file(file_path, filtered_data) data = filtered_data logger.info(f"Loaded {len(data)} valid entries from {file_path}") return data except json.JSONDecodeError as e: logger.error(f"Invalid JSON in {file_path}: {str(e)}. Resetting to default.") save_json_file(file_path, default) return default except Exception as e: logger.error(f"Failed to load {file_path}: {str(e)}. Returning default.") return default def save_json_file(file_path, data, timestamp=None): """ Save data to JSON file atomically. If timestamp is provided, append as an entry. """ logger = logging.getLogger(__name__) try: # If timestamp is provided, append as a new entry if timestamp: current_data = load_json_file(file_path, default=[]) new_entry = {'title': data, 'timestamp': timestamp} if new_entry not in current_data: # Avoid duplicates current_data.append(new_entry) data = current_data else: logger.info(f"Entry {data} already exists in {file_path}") return True # Validate JSON json.dumps(data) # Write to temp file temp_file = tempfile.NamedTemporaryFile('w', delete=False, encoding='utf-8') with open(temp_file.name, 'w', encoding='utf-8') as f: json.dump(data, f, indent=2) # Atomically move to target shutil.move(temp_file.name, file_path) logger.info(f"Saved data to {file_path}") return True except (json.JSONDecodeError, IOError) as e: logger.error(f"Failed to save {file_path}: {str(e)}") return False def generate_article_tweet(author, post, persona, summary=""): title = post["title"] url = post["url"] author_handle = f"@{author['username']}" prompt = ( f"Craft a sharp tweet (under 230 characters) for {author_handle} with the voice of '{persona}'. " f"Distill the essence of the article '{title}' and its summary into a concise, engaging message. " f"Summary: {summary}\n" f"Include one specific detail from the summary (e.g., a unique dish, location, or trend). " f"Include the raw URL '{url}' at the end. " f"Make it bold, spark curiosity, and invite engagement with a human touch. " f"Swap 'elevate' for dynamic terms like 'ignite' or 'unleash'. " f"Skip hashtags, emojis, or phrases like '[Read more]' or 'Read more'. " f"Skip any extra fluff or formatting around the URL—just append the raw URL after a space. " f"Example: 'Craving sushi? This Tokyo spot is unreal! {url}'" ) response = client.chat.completions.create( model=SUMMARY_MODEL, messages=[ {"role": "system", "content": "You are a social media viral expert crafting engaging tweets."}, {"role": "user", "content": prompt} ], max_tokens=100, temperature=0.7 ) tweet = response.choices[0].message.content.strip() # Post-generation check: Strip any emojis using regex tweet = re.sub(r'[\U0001F600-\U0001F64F\U0001F300-\U0001F5FF\U0001F680-\U0001F6FF\U0001F700-\U0001F77F\U0001F780-\U0001F7FF\U0001F800-\U0001F8FF\U0001F900-\U0001F9FF\U0001FA00-\U0001FA6F\U0001FA70-\U0001FAFF\U00002702-\U000027B0\U000024C2-\U0001F251]', '', tweet).strip() # Strip "[Read more]" or similar phrases as an additional failsafe tweet = re.sub(r'\[Read more\]\(.*?\)|\bRead more\b', '', tweet).strip() # Strip leading or trailing quotation marks tweet = tweet.strip('"\'') # Remove the URL if it already exists in the tweet to avoid duplication tweet = re.sub(rf'\s*{re.escape(url)}$', '', tweet).strip() # Ensure tweet fits within 280 characters, accounting for URL (Twitter shortens to 23 chars) url_length = 23 max_tweet_length = 280 - url_length - 1 # Subtract 1 for the space before URL if len(tweet) > max_tweet_length: tweet = tweet[:max_tweet_length-3] + "..." # Append the URL exactly once tweet = tweet + " " + url logging.info(f"Generated tweet: {tweet}") return tweet def post_tweet(author, content, media_ids=None, reply_to_id=None, tweet_type="rss"): """ Post a tweet for the given author using X API v2. Returns (tweet_id, tweet_data) on success, (None, None) on failure. """ logger = logging.getLogger(__name__) username = author['username'] credentials = X_API_CREDENTIALS.get(username) if not credentials: logger.error(f"No X API credentials found for {username}") return None, None # Check rate limit can_post, remaining, reset = check_author_rate_limit(author) if not can_post: reset_time = datetime.fromtimestamp(reset, tz=timezone.utc).strftime('%Y-%m-%d %H:%M:%S') logger.info(f"Cannot post {tweet_type} tweet for {username}: rate-limited. Remaining: {remaining}, Reset at: {reset_time}") return None, None oauth = OAuth1( client_key=credentials['api_key'], client_secret=credentials['api_secret'], resource_owner_key=credentials['access_token'], resource_owner_secret=credentials['access_token_secret'] ) url = 'https://api.x.com/2/tweets' payload = {'text': content} if media_ids: payload['media'] = {'media_ids': media_ids} if reply_to_id: payload['reply'] = {'in_reply_to_tweet_id': reply_to_id} try: response = requests.post(url, json=payload, auth=oauth) headers = response.headers # Update rate limit info rate_limit_file = '/home/shane/foodie_automator/rate_limit_info.json' rate_limit_info = load_json_file(rate_limit_file, default={}) if username in rate_limit_info: author_info = rate_limit_info[username] if response.status_code == 201: # Successful post - update remaining tweets and increment posted count author_info['tweets_posted_in_run'] = author_info.get('tweets_posted_in_run', 0) + 1 author_info['tweet_remaining'] = remaining - 1 # Decrement remaining tweets rate_limit_info[username] = author_info save_json_file(rate_limit_file, rate_limit_info) logger.info(f"Updated rate limit info for {username} ({tweet_type}): {remaining-1}/17 tweets remaining") elif response.status_code == 429: # Rate limit exceeded - update with API values remaining_str = headers.get('x-user-limit-24hour-remaining') reset_str = headers.get('x-user-limit-24hour-reset') if remaining_str is not None and reset_str is not None: try: remaining = int(remaining_str) reset = int(reset_str) author_info['tweet_remaining'] = remaining author_info['tweet_reset'] = reset # Don't reset tweets_posted_in_run here rate_limit_info[username] = author_info save_json_file(rate_limit_file, rate_limit_info) logger.info(f"Updated rate limit info from API for {username}: {remaining}/17 tweets remaining") except ValueError: logger.error(f"Failed to parse rate limit headers for {username}") else: logger.error(f"Missing rate limit headers for {username}") if response.status_code == 201: tweet_data = response.json() tweet_id = tweet_data.get('data', {}).get('id') logger.info(f"Successfully tweeted {tweet_type} for {username}: {content[:50]}... (ID: {tweet_id})") return tweet_id, tweet_data elif response.status_code == 429: logger.info(f"Rate limit exceeded for {username} ({tweet_type}): {remaining} remaining, reset at {datetime.fromtimestamp(reset, tz=timezone.utc)}") return None, None elif response.status_code == 403: error_data = response.json() error_message = error_data.get('detail', '') if "account is temporarily locked" in error_message.lower(): logger.error(f"Account lock detected for {username}: {error_message}") send_account_lock_alert(username, error_message) else: logger.error(f"Unexpected 403 response for {username}: {error_message}") return None, None else: logger.error(f"Failed to post {tweet_type} tweet for {username}: {response.status_code} - {response.text}") return None, None except Exception as e: logger.error(f"Unexpected error posting {tweet_type} tweet for {username}: {e}", exc_info=True) return None, None def select_best_persona(interest_score, content=""): logging.info("Using select_best_persona with interest_score and content") personas = ["Visionary Editor", "Foodie Critic", "Trend Scout", "Culture Connoisseur"] content_lower = content.lower() if any(kw in content_lower for kw in ["tech", "ai", "innovation", "sustainability"]): return random.choice(["Trend Scout", "Visionary Editor"]) elif any(kw in content_lower for kw in ["review", "critic", "taste", "flavor"]): return "Foodie Critic" elif any(kw in content_lower for kw in ["culture", "tradition", "history"]): return "Culture Connoisseur" if interest_score >= 8: return random.choice(personas[:2]) elif interest_score >= 6: return random.choice(personas[2:]) return random.choice(personas) def generate_image_query(title, summary): try: prompt = ( "Given the following article title and summary, generate a concise image search query (max 5 words) to find a relevant image. " "Also provide a list of relevance keywords (max 5 words) that should be associated with the image. " "Return the result as a JSON object with 'search' and 'relevance' keys.\n\n" f"Title: {title}\n\n" f"Summary: {summary}\n\n" "Example output:\n" "```json\n" "{\"search\": \"Italian cuisine trends\", \"relevance\": \"pasta wine dining culture\"}\n" "```" ) response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": "Generate an image search query and relevance keywords."} ], max_tokens=100, temperature=0.5 ) raw_response = response.choices[0].message.content json_match = re.search(r'```json\n([\s\S]*?)\n```', raw_response) if not json_match: logging.warning(f"Failed to parse image query JSON: {raw_response}") return title, [], True query_data = json.loads(json_match.group(1)) search_query = query_data.get("search", title) relevance_keywords = query_data.get("relevance", "").split() # Log the JSON object in a single line log_json = json.dumps(query_data).replace('\n', ' ').replace('\r', ' ') logging.debug(f"Image query from content: {log_json}") return search_query, relevance_keywords, False except Exception as e: logging.warning(f"Image query generation failed: {e}. Using title as fallback.") return title, [], True def smart_image_and_filter(title, summary): try: logging.info(f"Processing title: raw_title='{title}', summary='{summary[:100]}...'") content = f"{title}\n\n{summary}" prompt = ( "Analyze this article title and summary. Perform the following tasks:\n" "1. Extract the most specific and defining term (e.g., a proper noun like 'Ozempic', a unique concept like 'GLP-1', or a niche topic like 'Sushi') that makes the article distinct.\n" "2. Generate a concise image search query (3-7 words) that MUST include the most specific term from step 1, combined with relevant contextual keywords (e.g., 'dining', 'trends').\n" "3. Identify the main topic of the article (e.g., a specific food item or cuisine).\n" "4. List relevance keywords (up to 5) for the image search, including the specific term and related concepts.\n" "5. Determine if the article should be skipped based on these rules:\n" " - SKIP if about home appliances, recipes, promotions, or contains '[homemade]' or 'homemade'.\n" " - SKIP if it includes recipe-related terms like 'cook', 'bake', or 'ingredient'.\n" " - KEEP otherwise.\n" "Return as JSON with double quotes for all property names and string values (e.g., " "{\"image_query\": \"Ozempic dining trends\", \"specific_term\": \"Ozempic\", \"relevance\": [\"Ozempic\", \"dining\", \"trends\"], \"main_topic\": \"dining trends\", \"action\": \"KEEP\"})." ) response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": content} ], max_tokens=150 ) raw_result = response.choices[0].message.content.strip() logging.debug(f"Raw GPT response: '{raw_result}'") cleaned_result = re.sub(r'```json\s*|\s*```', '', raw_result).strip() fixed_result = re.sub(r"(?Image via {image_source}' else: caption = image_source requests.post( f"{wp_base_url}/media/{image_id}", headers={"Authorization": headers["Authorization"], "Content-Type": "application/json"}, json={"caption": caption} ) logging.info(f"Uploaded image '{safe_title}.jpg' to WP (ID: {image_id}) with caption '{caption}'") return image_id except Exception as e: logging.error(f"Image upload to WP failed for '{post_title}': {e}") print(f"Image upload to WP failed for '{post_title}': {e}") return None def determine_paragraph_count(interest_score): if interest_score >= 9: return 5 elif interest_score >= 7: return 4 return 3 def is_interesting(summary): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Rate this content from 0-10 based on its rarity, buzzworthiness, and engagement potential for food lovers, covering a wide range of food topics (skip recipes). " "Score 8-10 for rare, highly shareable ideas that grab attention. " "Score 5-7 for fresh, engaging updates with broad appeal. Score below 5 for common or unremarkable content. " "Return only a number." )}, {"role": "user", "content": f"Content: {summary}"} ], max_tokens=5 ) raw_score = response.choices[0].message.content.strip() score = int(raw_score) if raw_score.isdigit() else 0 print(f"Interest Score for '{summary[:50]}...': {score} (raw: {raw_score})") logging.info(f"Interest Score: {score} (raw: {raw_score})") return score except Exception as e: logging.error(f"Interestingness scoring failed: {e}") print(f"Interest Error: {e}") return 0 def generate_title_from_summary(summary): banned_words = ["elevate", "elevating", "elevated"] for attempt in range(3): try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Generate a concise, engaging title (under 100 characters) based on this summary, covering food topics. " "Craft it with Upworthy/Buzzfeed flair—think 'you won't believe this' or 'this is nuts'—for food insiders. " "Avoid quotes, emojis, special characters, or the words 'elevate', 'elevating', 'elevated'. " "End with a question to spark shares." )}, {"role": "user", "content": f"Summary: {summary}"} ], max_tokens=30 ) title = response.choices[0].message.content.strip().replace('"', '').replace("'", "") if ':' in title: title = title.split(':', 1)[1].strip() if len(title) > 100 or any(word in title.lower() for word in banned_words): reason = "length" if len(title) > 100 else "banned word" print(f"Rejected title (attempt {attempt + 1}/3): '{title}' due to {reason}") logging.info(f"Rejected title (attempt {attempt + 1}/3): '{title}' due to {reason}") continue logging.info(f"Generated title: {title}") return title except Exception as e: logging.error(f"Title generation failed (attempt {attempt + 1}/3): {e}") print(f"Title Error: {e}") print("Failed to generate valid title after 3 attempts") logging.info("Failed to generate valid title after 3 attempts") return None def summarize_with_gpt4o(content, source_name, link, interest_score=0, extra_prompt=""): try: persona = select_best_persona(interest_score, content) persona_config = PERSONA_CONFIGS.get(persona, { "article_prompt": "Write a concise, engaging summary that captures the essence of the content for food lovers.", "description": "a generic food writer", "tone": "an engaging tone" }) prompt = persona_config["article_prompt"].format( description=persona_config["description"], tone=persona_config["tone"], num_paragraphs=determine_paragraph_count(interest_score) ) logging.info(f"Using {persona} with interest_score and content") full_prompt = ( f"{prompt}\n\n" f"Do not include the article title in the summary.\n\n" f"{extra_prompt}\n\n" f"Avoid using the word 'elevate'—use more humanized language like 'level up' or 'bring to life'.\n" f"Content to summarize:\n{content}\n\n" f"Source: {source_name}\n" f"Link: {link}" ) response = client.chat.completions.create( model=SUMMARY_MODEL, messages=[ {"role": "system", "content": full_prompt}, {"role": "user", "content": content} ], max_tokens=1000, temperature=0.7 ) summary = response.choices[0].message.content.strip() # Post-process to remove the original title if it still appears # Extract the title from the content (assuming it's the first line or part of the prompt) # For simplicity, we can pass the title as an additional parameter if needed # Here, we'll assume the title is passed via the calling function (e.g., from foodie_automator_rss.py) # For now, we'll use a placeholder for the title removal logic # In foodie_automator_rss.py, the title is available as entry.title # We'll handle the title removal in the calling script instead logging.info(f"Processed summary (Persona: {persona}): {summary}") return summary except Exception as e: logging.error(f"Summary generation failed with model {SUMMARY_MODEL}: {e}") return None def insert_link_naturally(summary, source_name, source_url): try: logging.info(f"Input summary to insert_link_naturally: {summary!r}") # Split summary into paragraphs using \n\n (correct separator) paragraphs = summary.split('\n\n') if not paragraphs or all(not p.strip() for p in paragraphs): logging.error("No valid paragraphs to insert link.") return summary # Find paragraphs with at least two sentences eligible_paragraph_indices = [i for i, p in enumerate(paragraphs) if p.strip() and len(re.split(r'(?<=[.!?])\s+', p.strip())) >= 2] if not eligible_paragraph_indices: logging.warning("No paragraph with multiple sentences found, using fallback.") return append_link_as_fallback(summary, source_name, source_url) # Alternative phrases for variety (removed 'notes that' for natural flow) link_phrases = [ "according to {source}", "as reported by {source}" ] best_candidate = None best_score = -1 best_paragraph_idx = None best_paragraph = None # Score each eligible paragraph and sentence for suitability for idx in eligible_paragraph_indices: para = paragraphs[idx] sentences = re.split(r'(?<=[.!?])\s+', para.strip()) eligible_sentences = [ (i, s) for i, s in enumerate(sentences) if s.strip() and not s.endswith('?') and not s.endswith('!') ] if not eligible_sentences: continue for s_idx, sentence in eligible_sentences: score = 0 if any(word in sentence.lower() for word in ["is", "are", "has", "shows", "reveals"]): score += 2 score += len(sentence.split()) // 5 score += abs(s_idx - len(sentences) / 2) * -1 if score > best_score: best_score = score best_candidate = (s_idx, sentence) best_paragraph_idx = idx best_paragraph = para if best_candidate is None: logging.warning("No suitable sentence found, using fallback.") return append_link_as_fallback(summary, source_name, source_url) # Select a link phrase based on sentence structure sentence_idx, sentence = best_candidate link_phrase = random.choice(link_phrases) link_pattern = f'{source_name}' formatted_link = link_phrase.format(source=link_pattern) # Insert the link at the end of the selected sentence (no capitalization needed) sentences = re.split(r'(?<=[.!?])\s+', best_paragraph.strip()) new_sentence = f"{sentence.rstrip('.')} {formatted_link}." sentences[sentence_idx] = new_sentence new_para = ' '.join(sentences) paragraphs[best_paragraph_idx] = new_para # Rejoin paragraphs with \n\n new_summary = '\n\n'.join(paragraphs) logging.info(f"Summary with naturally embedded link: {new_summary!r}") return new_summary except Exception as e: logging.error(f"Link insertion failed: {e}") return append_link_as_fallback(summary, source_name, source_url) def append_link_as_fallback(summary, source_name, source_url): """Fallback method to append the link to the last paragraph.""" link_pattern = f'{source_name}' # Split summary into paragraphs using the correct separator (\n\n) paragraphs = summary.split('\n\n') if not paragraphs: # Edge case: empty summary paragraphs = [""] # Append the credit to the last paragraph credit = f' We learned about this from {link_pattern}.' paragraphs[-1] += credit new_summary = '\n\n'.join(paragraphs) logging.info(f"Fallback summary with link appended to last paragraph: {new_summary!r}") return new_summary def generate_category_from_summary(summary): try: if not isinstance(summary, str) or not summary.strip(): logging.warning(f"Invalid summary for category generation: {summary}. Defaulting to 'Trends'.") return "Trends" response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": ( "Based on this summary, select the most relevant category from: Buzz, Trends, Lifestyle, Culture, Health, Drink, Food, Eats. " "Return only the category name." )}, {"role": "user", "content": summary} ], max_tokens=10 ) category = response.choices[0].message.content.strip() logging.info(f"Generated category: {category}") return category if category in ["Buzz", "Trends", "Lifestyle", "Culture", "Health", "Drink", "Food", "Eats"] else "Trends" except Exception as e: logging.error(f"Category generation failed: {e}") return "Trends" def get_wp_category_id(category_name, wp_base_url, wp_username, wp_password): try: headers = {"Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}"} response = requests.get(f"{wp_base_url}/categories", headers=headers, params={"search": category_name}) response.raise_for_status() categories = response.json() for cat in categories: if cat["name"].lower() == category_name.lower(): return cat["id"] return None except Exception as e: logging.error(f"Failed to get WP category ID for '{category_name}': {e}") return None def create_wp_category(category_name, wp_base_url, wp_username, wp_password): try: headers = { "Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}", "Content-Type": "application/json" } payload = {"name": category_name} response = requests.post(f"{wp_base_url}/categories", headers=headers, json=payload) response.raise_for_status() return response.json()["id"] except Exception as e: logging.error(f"Failed to create WP category '{category_name}': {e}") return None def get_wp_tag_id(tag_name, wp_base_url, wp_username, wp_password): try: headers = {"Authorization": f"Basic {base64.b64encode(f'{wp_username}:{wp_password}'.encode()).decode()}"} response = requests.get(f"{wp_base_url}/tags", headers=headers, params={"search": tag_name}) response.raise_for_status() tags = response.json() for tag in tags: if tag["name"].lower() == tag_name.lower(): return tag["id"] return None except Exception as e: logging.error(f"Failed to get WP tag ID for '{tag_name}': {e}") return None def post_to_wp(post_data, category, link, author, image_url, original_source, image_source="Pixabay", uploader=None, page_url=None, interest_score=4, post_id=None, should_post_tweet=True, summary=None): """ Post or update content to WordPress, optionally tweeting the post. """ import logging import requests import base64 from foodie_config import X_API_CREDENTIALS logger = logging.getLogger(__name__) # Extract WordPress credentials from author dictionary wp_url = author.get("url") wp_username = author.get("username") wp_password = author.get("password") if not all([wp_url, wp_username, wp_password]): logger.error(f"Missing WordPress credentials for author: {wp_username or 'unknown'}") return None, None # Ensure wp_url ends with '/wp-json/wp/v2' if not wp_url.endswith('/wp-json/wp/v2'): wp_base_url = f"{wp_url.rstrip('/')}/wp-json/wp/v2" else: wp_base_url = wp_url # Hardcoded author ID map from old working version author_id_map = { "owenjohnson": 10, "javiermorales": 2, "aishapatel": 3, "trangnguyen": 12, "keishareid": 13, "lilamoreau": 7 } author_id = author_id_map.get(wp_username, 5) # Default to ID 5 if username not found try: headers = { "Authorization": "Basic " + base64.b64encode(f"{wp_username}:{wp_password}".encode()).decode(), "Content-Type": "application/json" } # Test authentication auth_test = requests.get(f"{wp_base_url}/users/me", headers=headers) auth_test.raise_for_status() logger.info(f"Auth test passed for {wp_username}: {auth_test.json()['id']}") # Get or create category ID category_id = get_wp_category_id(category, wp_base_url, wp_username, wp_password) if not category_id: category_id = create_wp_category(category, wp_base_url, wp_username, wp_password) if not category_id: logger.warning(f"Failed to get or create category '{category}', using default") category_id = 1 # Fallback to 'Uncategorized' else: logger.info(f"Created new category '{category}' with ID {category_id}") else: logger.info(f"Found existing category '{category}' with ID {category_id}") # Handle tags tags = [1] # Default tag ID (e.g., 'uncategorized') if interest_score >= 9: picks_tag_id = get_wp_tag_id("Picks", wp_base_url, wp_username, wp_password) if picks_tag_id and picks_tag_id not in tags: tags.append(picks_tag_id) logger.info(f"Added 'Picks' tag (ID: {picks_tag_id}) due to high interest score: {interest_score}") # Format content with

tags content = post_data["content"] if content is None: logger.error(f"Post content is None for title '{post_data['title']}' - using fallback") content = "Content unavailable. Check the original source for details." formatted_content = "\n".join(f"

{para}

" for para in content.split('\n') if para.strip()) # Upload image before posting image_id = None if image_url: logger.info(f"Attempting image upload for '{post_data['title']}', URL: {image_url}, source: {image_source}") image_id = upload_image_to_wp(image_url, post_data["title"], wp_base_url, wp_username, wp_password, image_source, uploader, page_url) if not image_id: logger.info(f"Flickr upload failed for '{post_data['title']}', falling back to Pixabay") pixabay_query = post_data["title"][:50] image_url, image_source, uploader, page_url = get_image(pixabay_query) if image_url: image_id = upload_image_to_wp(image_url, post_data["title"], wp_base_url, wp_username, wp_password, image_source, uploader, page_url) if not image_id: logger.warning(f"All image uploads failed for '{post_data['title']}' - posting without image") # Build payload payload = { "title": post_data["title"], "content": formatted_content, "status": post_data["status"], "categories": [category_id], "tags": tags, "author": author_id, "meta": { "original_link": link, "original_source": original_source, "interest_score": interest_score } } if image_id: payload["featured_media"] = image_id logger.info(f"Set featured image for post '{post_data['title']}': Media ID={image_id}") # Set endpoint for creating or updating post endpoint = f"{wp_base_url}/posts/{post_id}" if post_id else f"{wp_base_url}/posts" logger.debug(f"Sending POST to {endpoint} with payload: {json.dumps(payload, indent=2)}") response = requests.post(endpoint, headers=headers, json=payload) if response.status_code != 201 and response.status_code != 200: logger.error(f"WordPress API error: {response.status_code} - {response.text}") response.raise_for_status() post_info = response.json() if not isinstance(post_info, dict) or "id" not in post_info: raise ValueError(f"Invalid WP response: {post_info}") post_id = post_info["id"] post_url = post_info["link"] logger.info(f"{'Updated' if post_id else 'Posted'} WordPress post: {post_data['title']} (ID: {post_id})") # Save to recent posts timestamp = datetime.now(timezone.utc).isoformat() save_post_to_recent(post_data["title"], post_url, wp_username, timestamp) # Post tweet if enabled if should_post_tweet: credentials = X_API_CREDENTIALS.get(post_data["author"]) if credentials: # Select persona for the tweet (same logic as used in summarize_with_gpt4o) persona = select_best_persona(interest_score, post_data["content"]) logger.info(f"Selected persona for tweet: {persona}") # Generate GPT-based tweet tweet_post = { "title": post_data["title"], "url": post_url } # Use the provided summary if available, otherwise fall back to post_data["content"] tweet_summary = summary if summary is not None else post_data["content"] tweet_text = generate_article_tweet(author, tweet_post, persona, summary=tweet_summary) tweet_id, tweet_data = post_tweet(author, tweet_text, tweet_type="rss") if tweet_id: logger.info(f"Successfully tweeted for post: {post_data['title']} (Tweet ID: {tweet_id})") else: logger.warning(f"Failed to tweet for post: {post_data['title']}") return post_id, post_url except requests.exceptions.HTTPError as e: logger.error(f"Failed to {'update' if post_id else 'post'} WordPress post: {post_data['title']}: {e} - Response: {e.response.text}", exc_info=True) return None, None except requests.exceptions.RequestException as e: logger.error(f"Failed to {'update' if post_id else 'post'} WordPress post: {post_data['title']}: {e}", exc_info=True) return None, None except Exception as e: logger.error(f"Failed to {'update' if post_id else 'post'} WordPress post: {post_data['title']}: {e}", exc_info=True) return None, None # Configure Flickr API with credentials flickr_api.set_keys(api_key=FLICKR_API_KEY, api_secret=FLICKR_API_SECRET) logging.info(f"Flickr API configured with key: {FLICKR_API_KEY[:4]}... and secret: {FLICKR_API_SECRET[:4]}...") # Global variable to track the last Flickr request time last_flickr_request_time = 0 # Flickr request counter flickr_request_count = 0 flickr_request_start_time = time.time() # Define exclude keywords for filtering unwanted image types exclude_keywords = [ "poster", "infographic", "chart", "graph", "data", "stats", "text", "typography", "design", "advertisement", "illustration", "diagram", "layout", "print" ] # Initialize used_images as a set to track used image URLs used_images_file = "/home/shane/foodie_automator/used_images.json" used_images = set() # Load used images from file if it exists if os.path.exists(used_images_file): try: entries = load_json_file(used_images_file, IMAGE_EXPIRATION_DAYS * 24) # Use load_json_file for consistency for entry in entries: if isinstance(entry, dict) and "title" in entry and entry["title"].startswith('https://'): used_images.add(entry["title"]) else: logging.warning(f"Skipping invalid entry in {used_images_file}: {entry}") logging.info(f"Loaded {len(used_images)} used image URLs from {used_images_file}") except Exception as e: logging.warning(f"Failed to load used images from {used_images_file}: {e}. Resetting to empty set.") used_images = set() with open(used_images_file, 'w') as f: f.write("") # Function to save used_images to file def save_used_images(): """ Save used_images to used_images.json as a JSON array, preserving timestamps. """ try: # Create entries for used_images timestamp = datetime.now(timezone.utc).isoformat() entries = [ {"title": url, "timestamp": entry.get("timestamp", timestamp)} for url, entry in [ (url, next((e for e in load_json_file(used_images_file, IMAGE_EXPIRATION_DAYS * 24) if e["title"] == url), {})) for url in used_images ] ] # Use save_json_file for atomic write save_json_file(used_images_file, entries) logging.info(f"Saved {len(entries)} used image URLs to {used_images_file}") except Exception as e: logging.warning(f"Failed to save used images to {used_images_file}: {e}") def reset_flickr_request_count(): global flickr_request_count, flickr_request_start_time if time.time() - flickr_request_start_time >= 3600: # Reset every hour flickr_request_count = 0 flickr_request_start_time = time.time() def process_photo(photo, search_query): tags = [tag.text.lower() for tag in photo.getTags()] title = photo.title.lower() if photo.title else "" matched_keywords = [kw for kw in exclude_keywords if kw in tags or kw in title] if matched_keywords: logging.info(f"Skipping image with unwanted keywords: {photo.id} (tags: {tags}, title: {title}, matched: {matched_keywords})") return None # Try 'Large' size first, fall back to 'Medium' if unavailable img_url = None try: img_url = photo.getPhotoFile(size_label='Large') except flickr_api.flickrerrors.FlickrError as e: logging.info(f"Large size not available for photo {photo.id}: {e}, trying Medium") try: img_url = photo.getPhotoFile(size_label='Medium') except flickr_api.flickrerrors.FlickrError as e: logging.warning(f"Medium size not available for photo {photo.id}: {e}") return None if not img_url: logging.info(f"Image URL invalid for photo {photo.id}") return None # Check if the image is highly relevant to the query query_keywords = set(search_query.lower().split()) photo_keywords = set(tags + title.split()) is_relevant = bool(query_keywords & photo_keywords) # Check if any query keyword is in tags or title # Allow reuse of highly relevant images if img_url in used_images and not is_relevant: logging.info(f"Image already used and not highly relevant for photo {photo.id}: {img_url}") return None uploader = photo.owner.username page_url = f"https://www.flickr.com/photos/{photo.owner.nsid}/{photo.id}" used_images.add(img_url) save_used_images() flickr_data = { "title": search_query, "image_url": img_url, "source": "Flickr", "uploader": uploader, "page_url": page_url, "timestamp": datetime.now(timezone.utc).isoformat() } flickr_file = "/home/shane/foodie_automator/flickr_images.json" with open(flickr_file, 'a') as f: json.dump(flickr_data, f) f.write('\n') logging.info(f"Saved Flickr image metadata to {flickr_file}: {img_url}") logging.info(f"Selected Flickr image: {img_url} by {uploader} for query '{search_query}' (tags: {tags})") return img_url, "Flickr", uploader, page_url def search_flickr(query, per_page=5): try: photos = flickr_api.Photo.search( text=query, per_page=per_page, sort='relevance', safe_search=1, media='photos', license='4,5,9,10' ) return photos except Exception as e: logging.warning(f"Flickr API error for query '{query}': {e}") return [] def fetch_photo_by_id(photo_id): try: photo = flickr_api.Photo(id=photo_id) return photo except Exception as e: logging.warning(f"Failed to fetch Flickr photo ID {photo_id}: {e}") return None def search_ddg_for_flickr(query): ddg_query = f"{query} site:flickr.com" ddg_url = f"https://duckduckgo.com/?q={quote(ddg_query)}" try: response = requests.get(ddg_url, headers={'User-Agent': 'InsiderFoodieBot/1.0 (https://insiderfoodie.com; contact@insiderfoodie.com)'}, timeout=10) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') photo_ids = set() for link in soup.find_all('a', href=True): href = link['href'] match = re.search(r'flickr\.com/photos/[^/]+/(\d+)', href) if match: photo_id = match.group(1) photo_ids.add(photo_id) photo_ids = list(photo_ids)[:2] # Limit to 2 IDs logging.info(f"Found {len(photo_ids)} Flickr photo IDs via DDG: {photo_ids}") return photo_ids except Exception as e: logging.warning(f"DDG search failed for query '{ddg_query}': {e}") return set() def classify_keywords(keywords): prompt = ( "Given the following keywords from an image search query, classify each as 'specific' (e.g., brand names, unique entities like 'Taco Bell' or 'Paris') or 'generic' (e.g., common or abstract terms like 'dining' or 'trends'). " "Return a JSON object mapping each keyword to its classification.\n\n" "Keywords: " + ", ".join(keywords) + "\n\n" "Example output format (do not use these exact keywords in your response):\n" "```json\n" "{\n" " \"keyword1\": \"specific\",\n" " \"keyword2\": \"generic\"\n" "}\n```" ) try: response = client.chat.completions.create( model=LIGHT_TASK_MODEL, messages=[ {"role": "system", "content": "You are a helper that classifies keywords."}, {"role": "user", "content": prompt} ], max_tokens=100, temperature=0.5 ) raw_response = response.choices[0].message.content json_match = re.search(r'```json\n([\s\S]*?)\n```', raw_response) if not json_match: logging.warning(f"Failed to parse keyword classification JSON: {raw_response}") return {kw: "specific" for kw in keywords} classifications = json.loads(json_match.group(1)) return classifications except Exception as e: logging.warning(f"Keyword classification failed: {e}. Defaulting to all specific.") return {kw: "specific" for kw in keywords} def get_flickr_image(search_query, relevance_keywords, main_topic, specific_term=None): global used_images logger = logging.getLogger(__name__) def process_image(image_url, source_name, page_url): try: youtube_domains = ['youtube.com', 'ytimg.com'] if any(domain in image_url.lower() or domain in page_url.lower() for domain in youtube_domains): logger.info(f"Skipping YouTube image: {image_url}") return None headers = {'User-Agent': 'InsiderFoodieBot/1.0 (https://insiderfoodie.com; contact@insiderfoodie.com)'} response = requests.get(image_url, headers=headers, timeout=10) response.raise_for_status() img = Image.open(io.BytesIO(response.content)) width, height = img.size min_dimension = 1280 if width < min_dimension and height < min_dimension: logger.info(f"Skipping low-resolution image: {image_url} ({width}x{height})") return None aspect_ratio = width / height if (0.9 <= aspect_ratio <= 1.1) or "screenshot" in image_url.lower(): logger.info(f"Skipping potential screenshot: {image_url} (aspect ratio: {aspect_ratio})") return None watermark_domains = [ 'shutterstock.com', 'gettyimages.com', 'istockphoto.com', 'adobestock.com', '123rf.com', 'dreamstime.com', 'alamy.com', 'stock.adobe.com', 'bigstockphoto.com', 'depositphotos.com', 'fotolia.com', 'canstockphoto.com', 'stockfresh.com', 'featurepics.com', 'stockvault.net', 'stockfreeimages.com', 'freeimages.com', 'freepik.com', 'vecteezy.com', 'pikwizard.com', 'stockunlimited.com', 'stockphoto.com', 'stockphotosecrets.com', 'stockphotopro.com', 'stockphotosite.com', 'stockphotographysite.com', 'stockphotographysites.com', 'stockphotographysites.net', 'stockphotographysites.org', 'stockphotographysites.info', 'stockphotographysites.biz' ] if any(domain in image_url.lower() or domain in page_url.lower() for domain in watermark_domains): logger.info(f"Skipping image from stock photo site (potential watermark): {image_url}") return None # Convert to grayscale img = img.convert("L") # Increase contrast enhancer = ImageEnhance.Contrast(img) img = enhancer.enhance(2) # Optional: sharpen img = img.filter(ImageFilter.SHARPEN) text = pytesseract.image_to_string(img).strip().lower() logger.info(f"OCR text for {image_url}: '{text}' (word count: {len(text.split())})") word_count = len(text.split()) if word_count > 5: logger.info(f"Skipping image with too much text: {image_url} ({word_count} words)") return None if image_url in used_images: logger.info(f"Image already used: {image_url}") return None used_images.add(image_url) save_used_images() uploader = "Unknown" logger.info(f"Selected image: {image_url} from {source_name} ({width}x{height})") return image_url, source_name, uploader, page_url except Exception as e: logger.warning(f"Failed to process image {image_url}: {e}") return None ddg_query = f"{search_query} license:public domain" logger.info(f"Searching DDG with query: '{ddg_query}'") try: with DDGS() as ddgs: results = ddgs.images(ddg_query, safesearch="on", max_results=20) prioritized_results = [] other_results = [] for result in results: image_url = result.get("image") page_url = result.get("url") source_match = re.search(r'https?://(?:www\.)?([^/]+)', page_url) if source_match: domain = source_match.group(1) source_name = domain.rsplit('.', 1)[0].capitalize() else: source_name = "Public Domain" if not image_url or not image_url.endswith(('.jpg', '.jpeg', '.png')): continue image_metadata = f"{result.get('title', '').lower()} {page_url.lower()}" if specific_term and specific_term.lower() in image_metadata: prioritized_results.append((image_url, source_name, page_url)) else: other_results.append((image_url, source_name, page_url)) for image_url, source_name, page_url in prioritized_results + other_results: result = process_image(image_url, source_name, page_url) if result: return result except Exception as e: logger.warning(f"DDG search failed for '{ddg_query}': {e}") logger.info(f"No valid DDG images, falling back to Pixabay for '{search_query}'") image_url, source_name, uploader, page_url = get_image(search_query, specific_term) if image_url: used_images.add(image_url) save_used_images() logger.info(f"Selected Pixabay image: {image_url}") return image_url, source_name, uploader, page_url logger.warning(f"No valid images found for query '{search_query}'") return None, None, None, None def get_image(search_query, specific_term=None): headers = {'User-Agent': 'InsiderFoodieBot/1.0 (https://insiderfoodie.com; contact@insiderfoodie.com)'} def process_image(image_url, source_name, page_url): """Helper to process Pixabay images for watermarks and resolution.""" try: response = requests.get(image_url, headers=headers, timeout=10) response.raise_for_status() img = Image.open(io.BytesIO(response.content)) # Check resolution width, height = img.size min_dimension = 1280 if width < min_dimension and height < min_dimension: logger.info(f"Skipping low-resolution Pixabay image: {image_url} ({width}x{height})") return None # Check for watermarks via OCR text = pytesseract.image_to_string(img).strip().lower() watermark_phrases = [ 'shutterstock', 'getty images', 'istock', 'adobe stock', 'watermark', '123rf', 'dreamstime', 'alamy', 'preview', 'stock photo' ] if any(phrase in text for phrase in watermark_phrases): logger.info(f"Skipping watermarked Pixabay image: {image_url} (detected: {text})") return None word_count = len(text.split()) if word_count > 5: logger.info(f"Skipping Pixabay image with too much text: {image_url} ({word_count} words)") return None return image_url, source_name, page_url, width, height except Exception as e: logger.warning(f"Failed to process Pixabay image {image_url}: {e}") return None def fetch_pixabay_image(query): try: pixabay_url = f"https://pixabay.com/api/?key={PIXABAY_API_KEY}&q={quote(query)}&image_type=photo&per_page=20" response = requests.get(pixabay_url, headers=headers, timeout=10) response.raise_for_status() data = response.json() for hit in data.get('hits', []): img_url = hit.get('largeImageURL') if not img_url or img_url in used_images: continue uploader = hit.get('user', 'Unknown') page_url = hit.get('pageURL', img_url) # Process the image for watermarks and resolution result = process_image(img_url, "Pixabay", page_url) if result: image_url, source_name, page_url, width, height = result used_images.add(img_url) save_used_images() logger.info(f"Selected Pixabay image: {img_url} by {uploader} for query '{query}' ({width}x{height})") return image_url, source_name, uploader, page_url logger.info(f"No valid Pixabay image found for query '{query}'. Trying fallback query.") return None, None, None, None except Exception as e: logger.warning(f"Pixabay image fetch failed for query '{query}': {e}") return None, None, None, None # Try with the original query image_url, source_name, uploader, page_url = fetch_pixabay_image(search_query) if image_url: return image_url, source_name, uploader, page_url # Fallback to a dynamic query using the specific term if provided if specific_term: fallback_query = f"{specific_term} dining trends" image_url, source_name, uploader, page_url = fetch_pixabay_image(fallback_query) if image_url: return image_url, source_name, uploader, page_url # Final fallback to a generic query fallback_query = "food dining trends" image_url, source_name, uploader, page_url = fetch_pixabay_image(fallback_query) if image_url: return image_url, source_name, uploader, page_url logger.error(f"All image fetch attempts failed for query '{search_query}'. Returning None.") return None, None, None, None def fetch_pixabay_image(query): try: pixabay_url = f"https://pixabay.com/api/?key={PIXABAY_API_KEY}&q={quote(query)}&image_type=photo&per_page=20" response = requests.get(pixabay_url, headers=headers, timeout=10) response.raise_for_status() data = response.json() for hit in data.get('hits', []): img_url = hit.get('largeImageURL') if not img_url or img_url in used_images: continue uploader = hit.get('user', 'Unknown') page_url = hit.get('pageURL', img_url) # Process the image for watermarks and resolution result = process_image(img_url, "Pixabay", page_url) if result: image_url, source_name, page_url, width, height = result used_images.add(img_url) save_used_images() logger.info(f"Selected Pixabay image: {img_url} by {uploader} for query '{query}' ({width}x{height})") return image_url, source_name, uploader, page_url logger.info(f"No valid Pixabay image found for query '{query}'. Trying fallback query.") return None, None, None, None except Exception as e: logger.warning(f"Pixabay image fetch failed for query '{query}': {e}") return None, None, None, None # Try with the original query image_url, source_name, uploader, page_url = fetch_pixabay_image(search_query) if image_url: return image_url, source_name, uploader, page_url # Fallback to a generic query fallback_query = "food dining" image_url, source_name, uploader, page_url = fetch_pixabay_image(fallback_query) if image_url: return image_url, source_name, uploader, page_url logger.error(f"All image fetch attempts failed for query '{search_query}'. Returning None.") return None, None, None, None def select_best_author(content, interest_score): try: best_score = -1 best_author = None for author in AUTHORS: persona = PERSONA_CONFIGS.get(author["username"], {}) prompt = persona.get("prompt", "") current_score = interest_score if "trend" in prompt.lower(): current_score += 2 elif "recipe" in prompt.lower(): current_score += 1 if current_score > best_score: best_score = current_score best_author = author["username"] if not best_author: best_author = random.choice([author["username"] for author in AUTHORS]) logging.info(f"Selected author: {best_author} with adjusted score: {best_score}") return best_author except Exception as e: logging.error(f"Error in select_best_author: {e}") return random.choice([author["username"] for author in AUTHORS]) def get_next_author_round_robin(): """ Select the next author using round-robin, respecting real-time X API rate limits. Persists the last selected author index to ensure fair rotation across runs. Returns an author dict or None if no authors are available. """ logger = logging.getLogger(__name__) state_file = '/home/shane/foodie_automator/author_state.json' # Load or initialize state state = load_json_file(state_file, default={'last_author_index': -1}) last_index = state.get('last_author_index', -1) # Try each author, starting from the next one after last_index for i in range(len(AUTHORS)): index = (last_index + 1 + i) % len(AUTHORS) author = AUTHORS[index] username = author['username'] can_post, remaining, reset = check_author_rate_limit(author) if can_post: # Update state with the selected author index state['last_author_index'] = index save_json_file(state_file, state) logger.info(f"Selected author {username} with {remaining}/17 tweets remaining") return author else: reset_time = datetime.fromtimestamp(reset, tz=timezone.utc).strftime('%Y-%m-%d %H:%M:%S') logger.info(f"Author {username} is rate-limited. Remaining: {remaining}, Reset at: {reset_time}") logger.warning("No authors available due to tweet rate limits.") return None def send_account_lock_alert(username, error_message): """Send email alert for account lockout.""" try: import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from foodie_config import EMAIL_CONFIG # Add this to your config file msg = MIMEMultipart() msg['From'] = EMAIL_CONFIG['from_email'] msg['To'] = EMAIL_CONFIG['to_email'] msg['Subject'] = f"🚨 X Account Lock Alert: {username}" body = f""" X Account Lock Alert! Username: {username} Time: {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')} Error: {error_message} Action Required: 1. Visit https://twitter.com 2. Log in to {username} 3. Complete verification if prompted 4. Unlock the account This is an automated alert from your foodie_automator system. """ msg.attach(MIMEText(body, 'plain')) with smtplib.SMTP(EMAIL_CONFIG['smtp_server'], EMAIL_CONFIG['smtp_port']) as server: server.starttls() server.login(EMAIL_CONFIG['smtp_username'], EMAIL_CONFIG['smtp_password']) server.send_message(msg) logger.info(f"Sent account lock alert email for {username}") except Exception as e: logger.error(f"Failed to send account lock alert email: {e}") def get_x_rate_limit_status(author): """ Check the X API Free tier rate limit by posting a test tweet. Returns (remaining, reset) based on app-level or user-level 24-hour headers. Returns (None, None) if the check fails. """ username = author['username'] credentials = X_API_CREDENTIALS.get(username) if not credentials: logger.error(f"No X API credentials found for {username}") return None, None oauth = OAuth1( client_key=credentials['api_key'], client_secret=credentials['api_secret'], resource_owner_key=credentials['access_token'], resource_owner_secret=credentials['access_token_secret'] ) url = 'https://api.x.com/2/tweets' payload = {'text': f'Test tweet to check rate limits for {username} - please ignore {int(time.time())}'} # Add delay to avoid IP-based rate limiting logger.info(f"Waiting 5 seconds before attempting to post for {username}") time.sleep(5) try: response = requests.post(url, json=payload, auth=oauth) headers = response.headers logger.debug(f"Rate limit headers for {username}: {headers}") # Initialize defaults remaining = None reset = None current_time = int(time.time()) if response.status_code == 201: # Extract app-level 24-hour limits remaining_str = headers.get('x-app-limit-24hour-remaining') reset_str = headers.get('x-app-limit-24hour-reset') if remaining_str is None or reset_str is None: logger.error(f"App 24-hour limit headers missing for {username}: {headers}") return None, None elif response.status_code == 429: # Extract user-level 24-hour limits for rate limit exceeded remaining_str = headers.get('x-user-limit-24hour-remaining') reset_str = headers.get('x-user-limit-24hour-reset') if remaining_str is None or reset_str is None: logger.error(f"User 24-hour limit headers missing for {username}: {headers}") return None, None logger.info(f"Rate limit exceeded for {username}") elif response.status_code == 403: error_data = response.json() error_message = error_data.get('detail', '') if "account is temporarily locked" in error_message.lower(): logger.error(f"Account lock detected for {username}: {error_message}") send_account_lock_alert(username, error_message) else: logger.error(f"Unexpected 403 response for {username}: {error_message}") return None, None else: logger.error(f"Unexpected response for {username}: {response.status_code} - {response.text}") return None, None # Parse headers try: remaining = int(remaining_str) reset = int(reset_str) except ValueError as e: logger.error(f"Failed to parse rate limit headers for {username}: remaining={remaining_str}, reset={reset_str}, error={e}") return None, None # Validate remaining tweets if remaining < 0 or remaining > 17: # Free tier max is 17 logger.warning(f"Invalid remaining tweets for {username}: {remaining}. Capping at 17.") remaining = min(remaining, 17) # Ensure reset is in the future if reset <= current_time or reset > current_time + 2 * 86400: # Allow up to 48 hours logger.warning(f"Invalid reset time {reset} ({datetime.fromtimestamp(reset, tz=timezone.utc)}) for {username}. Setting to 24 hours from now.") reset = current_time + 86400 # 24 hours if response.status_code == 201: # Delete the test tweet tweet_id = response.json().get('data', {}).get('id') if tweet_id: delete_url = f'https://api.x.com/2/tweets/{tweet_id}' delete_response = requests.delete(delete_url, auth=oauth) if delete_response.status_code == 200: logger.info(f"Successfully deleted test tweet {tweet_id} for {username}") else: logger.warning(f"Failed to delete test tweet {tweet_id} for {username}: {delete_response.status_code} - {delete_response.text}") logger.info(f"Rate limit for {username}: {remaining} remaining, reset at {datetime.fromtimestamp(reset, tz=timezone.utc)}") return remaining, reset except Exception as e: logger.error(f"Unexpected error fetching X rate limit for {username}: {e}", exc_info=True) return None, None def update_system_activity(script_name, status, pid=None): """ Record or update a script's activity in system_activity.json. Args: script_name (str): Name of the script (e.g., 'foodie_engagement_tweet'). status (str): 'running' or 'stopped'. pid (int): Process ID (required for 'running', optional for 'stopped'). """ activity_file = "/home/shane/foodie_automator/system_activity.json" try: # Load existing activities activities = load_json_file(activity_file, default=[]) # Update or add entry timestamp = datetime.now(timezone.utc).isoformat() entry = { "script_name": script_name, "pid": pid if status == "running" else None, "start_time": timestamp if status == "running" else None, "stop_time": timestamp if status == "stopped" else None, "status": status } # Find existing entry for this script for i, act in enumerate(activities): if act["script_name"] == script_name and act["status"] == "running": if status == "stopped": activities[i]["status"] = "stopped" activities[i]["stop_time"] = timestamp activities[i]["pid"] = None break else: # No running entry found, append new entry if status == "running": activities.append(entry) # Save updated activities save_json_file(activity_file, activities) logger.info(f"Updated system activity: {script_name} is {status}") except Exception as e: logger.error(f"Failed to update system_activity.json for {script_name}: {e}") def prune_system_activity(tweet_reset_time): """ Prune system_activity.json entries older than 24 hours, aligned with tweet reset time. Args: tweet_reset_time (float): Unix timestamp of the tweet quota reset. """ activity_file = "/home/shane/foodie_automator/system_activity.json" try: activities = load_json_file(activity_file, default=[]) cutoff = datetime.now(timezone.utc) - timedelta(hours=24) pruned_activities = [] for entry in activities: # Use start_time or stop_time for pruning time_str = entry.get("stop_time") or entry.get("start_time") if not time_str: continue try: entry_time = datetime.fromisoformat(time_str) if entry_time > cutoff: pruned_activities.append(entry) except ValueError: logger.warning(f"Invalid timestamp in system_activity.json: {time_str}") continue save_json_file(activity_file, pruned_activities) logger.info(f"Pruned system_activity.json to {len(pruned_activities)} entries") except Exception as e: logger.error(f"Failed to prune system_activity.json: {e}") def is_any_script_running(): """ Check if any script is running by inspecting system_activity.json and verifying PIDs. Returns True if at least one script is running, False otherwise. """ activity_file = "/home/shane/foodie_automator/system_activity.json" try: activities = load_json_file(activity_file, default=[]) for entry in activities: if entry.get("status") == "running" and entry.get("pid"): try: # Verify the process is still running process = psutil.Process(entry["pid"]) if process.is_running(): logger.debug(f"Active script detected: {entry['script_name']} (PID: {entry['pid']})") return True else: # Process is dead, mark as stopped entry["status"] = "stopped" entry["stop_time"] = datetime.now(timezone.utc).isoformat() entry["pid"] = None logger.debug(f"Marked stale script as stopped: {entry['script_name']}") except psutil.NoSuchProcess: # Process doesn't exist, mark as stopped entry["status"] = "stopped" entry["stop_time"] = datetime.now(timezone.utc).isoformat() entry["pid"] = None logger.debug(f"Marked stale script as stopped: {entry['script_name']}") # Save updated activities if any were marked as stopped save_json_file(activity_file, activities) logger.debug("No active scripts detected") return False except Exception as e: logger.error(f"Failed to check system_activity.json: {e}") return False def initialize_rate_limit_info(): """ Initialize rate_limit_info.json with proper structure for all authors. """ rate_limit_file = '/home/shane/foodie_automator/rate_limit_info.json' current_time = time.time() tweet_window_seconds = 86400 # 24 hours # Initialize with all authors rate_limit_info = {} for author in AUTHORS: username = author['username'] rate_limit_info[username] = { 'tweet_remaining': 17, # Free tier max 'tweet_reset': current_time + tweet_window_seconds, 'tweets_posted_in_run': 0 } # Save the initialized data save_json_file(rate_limit_file, rate_limit_info) logger.info(f"Initialized rate_limit_info.json with {len(rate_limit_info)} authors") return rate_limit_info def check_author_rate_limit(author, max_tweets=17, tweet_window_seconds=86400): """ Check if an author can post based on their X API Free tier quota (17 tweets per 24 hours per user). Uses system_activity.json to determine if test tweets are needed. Returns (can_post, remaining, reset_timestamp) where can_post is True if tweets are available. """ rate_limit_file = '/home/shane/foodie_automator/rate_limit_info.json' current_time = time.time() # Load rate limit info rate_limit_info = load_json_file(rate_limit_file, default={}) username = author['username'] # Initialize author entry if missing or if file is empty if not rate_limit_info or username not in rate_limit_info: rate_limit_info = initialize_rate_limit_info() author_info = rate_limit_info[username] # Prune system_activity.json using the tweet reset time reset_time = author_info.get('tweet_reset', current_time + tweet_window_seconds) prune_system_activity(reset_time) # Check if any script is running if is_any_script_running(): # At least one script is running, trust rate_limit_info.json logger.info(f"At least one script is running, using stored rate limit info for {username}") remaining = author_info.get('tweet_remaining', max_tweets) reset = author_info.get('tweet_reset', current_time + tweet_window_seconds) # Check if reset time has passed if current_time >= reset: logger.info(f"Reset time passed for {username}, resetting quota") remaining = max_tweets reset = current_time + tweet_window_seconds author_info['tweet_remaining'] = remaining author_info['tweet_reset'] = reset author_info['tweets_posted_in_run'] = 0 rate_limit_info[username] = author_info save_json_file(rate_limit_file, rate_limit_info) # Adjust for tweets posted in this run remaining = remaining - author_info.get('tweets_posted_in_run', 0) else: # No scripts are running, post test tweet to sync quota logger.info(f"No scripts are running, posting test tweet for {username} to sync quota") remaining, api_reset = get_x_rate_limit_status(author) if remaining is None or api_reset is None: # Fallback: Use last known quota or assume 0 remaining if current_time < author_info.get('tweet_reset', current_time + tweet_window_seconds): remaining = author_info.get('tweet_remaining', 0) reset = author_info.get('tweet_reset', current_time + tweet_window_seconds) logger.warning(f"Test tweet failed for {username}, using last known quota: {remaining} remaining") else: remaining = 0 # Assume exhausted if API fails and reset time has passed reset = current_time + tweet_window_seconds logger.warning(f"Test tweet failed for {username}, assuming quota exhausted") else: remaining = min(remaining, max_tweets) # Ensure within Free tier limit reset = api_reset # Update author info but preserve tweets_posted_in_run author_info['tweet_remaining'] = remaining author_info['tweet_reset'] = reset # Don't reset tweets_posted_in_run here rate_limit_info[username] = author_info save_json_file(rate_limit_file, rate_limit_info) # Validate remaining tweets if remaining < 0: logger.warning(f"Negative remaining tweets for {username}: {remaining}. Setting to 0.") remaining = 0 can_post = remaining > 0 if not can_post: reset_time_dt = datetime.fromtimestamp(reset, tz=timezone.utc).strftime('%Y-%m-%d %H:%M:%S') logger.info(f"Author {username} quota exhausted. Remaining: {remaining}, Reset at: {reset_time_dt}") else: logger.info(f"Quota for {username}: {remaining}/{max_tweets} tweets remaining") return can_post, remaining, reset def prepare_post_data(summary, title, main_topic=None): try: logging.info(f"Preparing post data for summary: {summary[:100]}...") # Use the original generate_title_from_summary function to generate the title new_title = generate_title_from_summary(summary) if not new_title: logging.warning("Title generation failed, using fallback title") new_title = "A Tasty Food Discovery Awaits You" logging.info(f"Generated new title: '{new_title}'") # Update to unpack four values search_query, relevance_keywords, generated_main_topic, skip_flag = smart_image_and_filter(new_title, summary) if skip_flag: logging.info("Summary filtered out during post preparation") return None, None, None, None, None, None, None # Use the provided main_topic if available, otherwise use the generated one effective_main_topic = main_topic if main_topic else generated_main_topic image_url, image_source, uploader, page_url = get_flickr_image(search_query, relevance_keywords, effective_main_topic) if not image_url: image_url, image_source, uploader, page_url = get_image(search_query) if not image_url: logging.warning("No image found for post, skipping") return None, None, None, None, None, None, None # Select a full author dictionary from AUTHORS (already imported from foodie_config) author = random.choice(AUTHORS) categories = ["Buzz", "Trends", "Lifestyle", "Culture", "Health", "Drink", "Food", "Eats"] category = random.choice(categories) post_data = { "title": new_title, "content": summary, "status": "publish", "author": author["username"], # Use the username in post_data "categories": [category] } logging.info(f"Post data prepared: Title: '{new_title}', Category: {category}, Author: {author['username']}") return post_data, author, category, image_url, image_source, uploader, page_url except Exception as e: logging.error(f"Failed to prepare post data: {e}") return None, None, None, None, None, None, None def save_post_to_recent(post_title, post_url, author_username, timestamp): """Save a post to recent_posts.json, maintaining a JSON array.""" try: recent_posts = load_json_file(RECENT_POSTS_FILE, expiration_hours=24) # Check for duplicates before appending entry = { "title": post_title, "url": post_url, "author_username": author_username, "timestamp": timestamp } key = (post_title, post_url, author_username) if any((p["title"], p["url"], p["author_username"]) == key for p in recent_posts): logging.debug(f"Skipping duplicate post: {post_title}") return recent_posts.append(entry) with open(RECENT_POSTS_FILE, 'w') as f: json.dump(recent_posts, f, indent=2) logging.info(f"Saved post '{post_title}' to {RECENT_POSTS_FILE}") except Exception as e: logging.error(f"Failed to save post to {RECENT_POSTS_FILE}: {e}") def prune_recent_posts(): """Prune recent_posts.json to keep entries within the last 24 hours.""" try: recent_posts = load_json_file(RECENT_POSTS_FILE, expiration_hours=24) with open(RECENT_POSTS_FILE, 'w') as f: json.dump(recent_posts, f, indent=2) logging.info(f"Pruned {RECENT_POSTS_FILE} to {len(recent_posts)} entries") except Exception as e: logging.error(f"Failed to prune {RECENT_POSTS_FILE}: {e}")