update tweet post every 2 days

my-fix-branch
Shane 7 months ago
parent 15186846be
commit a4df2954d4
  1. 40
      foodie_engagement_tweet.py
  2. 4
      foodie_weekly_thread.py
  3. 55
      generate_backgrounds.py

@ -1,8 +1,8 @@
import random
import logging
from datetime import datetime
from datetime import datetime, timedelta
import openai
from foodie_utils import post_tweet, AUTHORS
from foodie_utils import post_tweet, AUTHORS, SUMMARY_MODEL
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
@ -19,7 +19,7 @@ def generate_engagement_tweet(author):
try:
response = openai.ChatCompletion.create(
model="gpt-4o",
model=SUMMARY_MODEL,
messages=[
{"role": "system", "content": "You are a social media expert crafting engaging tweets."},
{"role": "user", "content": prompt}
@ -44,18 +44,26 @@ def generate_engagement_tweet(author):
return template.format(handle=author_handle)
def post_engagement_tweet():
for author in AUTHORS:
tweet = generate_engagement_tweet(author)
logging.info(f"Posting engagement tweet for {author['username']}: {tweet}")
if post_tweet(author, tweet):
logging.info(f"Successfully posted engagement tweet for {author['username']}")
else:
logging.warning(f"Failed to post engagement tweet for {author['username']}")
# Reference date for calculating the 2-day interval
reference_date = datetime(2025, 4, 29, tzinfo=timezone.utc) # Starting from April 29, 2025
current_date = datetime.now(timezone.utc)
# Calculate the number of days since the reference date
days_since_reference = (current_date - reference_date).days
# Post only if the number of days since the reference date is divisible by 2
if days_since_reference % 2 == 0:
logging.info("Today is an engagement tweet day (every 2 days). Posting...")
for author in AUTHORS:
tweet = generate_engagement_tweet(author)
logging.info(f"Posting engagement tweet for {author['username']}: {tweet}")
if post_tweet(author, tweet):
logging.info(f"Successfully posted engagement tweet for {author['username']}")
else:
logging.warning(f"Failed to post engagement tweet for {author['username']}")
else:
logging.info("Today is not an engagement tweet day (every 2 days). Skipping...")
if __name__ == "__main__":
# Run only on Mondays
if datetime.now(timezone.utc).weekday() == 0: # Monday (0 = Monday)
post_engagement_tweet()
else:
logging.info("Not Monday - skipping engagement tweet posting")
post_engagement_tweet()

@ -3,7 +3,7 @@ from datetime import datetime, timedelta
import logging
import random
import openai
from foodie_utils import post_tweet, AUTHORS
from foodie_utils import post_tweet, AUTHORS, SUMMARY_MODEL
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
@ -46,7 +46,7 @@ def generate_intro_tweet(author):
try:
response = openai.ChatCompletion.create(
model="gpt-4o",
model=SUMMARY_MODEL,
messages=[
{"role": "system", "content": "You are a social media expert crafting engaging tweets."},
{"role": "user", "content": prompt}

@ -1,55 +0,0 @@
import json
import logging
from openai import OpenAI
from foodie_config import OPENAI_API_KEY, AUTHORS, LIGHT_TASK_MODEL
from datetime import datetime, timezone
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
client = OpenAI(api_key=OPENAI_API_KEY)
def generate_background(author):
# Include the DOB in the prompt to contextualize the timeline
dob = author.get('dob', '1980-01-01') # Fallback DOB if not provided
current_year = datetime.now().year
birth_year = int(dob.split('-')[0])
age = current_year - birth_year # Calculate approximate age
prompt = (
f"Generate a fictional background for a food writer named {author['username']} with the persona '{author['persona']}'. "
f"They were born on {dob} and are currently {age} years old. Use this to create a realistic timeline for their life events. "
"Include: hometown, cultural influences, an early food memory (from their childhood, appropriate for their birth year), "
"and how they became a food writer (considering their age and career timeline). "
f"Match the tone of their bio: '{author['bio']}'. Keep it concise (100-150 words). "
"Return as JSON: {'username': '...', 'hometown': '...', 'cultural_influences': '...', 'early_memory': '...', 'career_path': '...'}"
)
try:
response = client.chat.completions.create(
model=LIGHT_TASK_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": f"Generate background for {author['username']}."}
],
max_tokens=200
)
raw_result = response.choices[0].message.content.strip()
cleaned_result = raw_result.replace('```json', '').replace('```', '').strip()
return json.loads(cleaned_result)
except Exception as e:
logging.error(f"Failed to generate background for {author['username']}: {e}")
return None
def main():
backgrounds = []
for author in AUTHORS:
background = generate_background(author)
if background:
backgrounds.append(background)
logging.info(f"Generated background for {author['username']}")
with open('/home/shane/foodie_automator/author_backgrounds.json', 'w') as f:
json.dump(backgrounds, f, indent=2)
logging.info("Saved backgrounds to author_backgrounds.json")
if __name__ == "__main__":
main()
Loading…
Cancel
Save